
SOTA_OD
文章平均质量分 77
_击空明兮溯流光_
这个作者很懒,什么都没留下…
展开
-
论文笔记: ICLR2021 Deformable DETR: Deformable Transformers for End-to-End Object Detection
参考:Deformable DETR学习笔记_WaitPX的博客-CSDN博客_deformable detr基于Transformer的ViT、DETR、Deformable DETR原理详解 - Jerry_Jin - 博客园背景:DERT存在的问题:(1)训练时间长,收敛速度慢(2)在小物体上的表现较差:其他的检测器通过高分辨率特征图去提取小物体,但高分辨率特征图会导致transformer不可接受的计算复杂度以上归因于transformer在处理图像问题上的不原创 2021-10-29 11:28:16 · 569 阅读 · 0 评论 -
论文笔记:ECCV2020 DETR End-to-End Object Detection with Transformers
参考:DETR目标检测新范式带来的思考_zandaoguang的博客-CSDN博客Propose将transformer融入目标检测中,实现no anchor的简化操作。Method:LOSS:DETR站在全局的视角,用二分图匹配算法(匈牙利算法)计算pred与gt之间的最佳匹配,从而实现label assignment假设有固定N(N>物体类别数目),可以用Hungarian algorithm优化。其中c为物体类别,b为bbox。本文与其他算法的..原创 2021-10-28 11:50:49 · 240 阅读 · 0 评论 -
论文笔记:YOLOX
论文:https://arxiv.org/pdf/2107.08430.pdf参考:YOLOX深度解析 - 知乎YOLOX深度解析(二)-simOTA详解 - 知乎改进点:Decoupled head加快收敛速度、提高APStrong data augmentationadd Mosaic and MixUp into our augmentation strategies to boost YOLOX’s per- formance.Anch原创 2021-10-26 11:53:29 · 480 阅读 · 0 评论