LRU算法:最近最少使用算法。大意就是根据最近访问的记录,对缓存的数据进行淘汰。如果一个数据最近被访问,或经常访问。则把数据放到列表的前面,而数据很久未访问,或者访问率较低,就会被放在后面,在列表内存不足的时候,将其移除缓存列表。
#include <iostream>
#include <unordered_map>
#include <algorithm>
using namespace std;
//双向链表结构
struct DLinkedNode {
//保存一个key,value对
int key, value;
DLinkedNode* prev;
DLinkedNode* next;
DLinkedNode(): key(0), value(0), prev(nullptr), next(nullptr) {}
DLinkedNode(int _key, int _value): key(_key), value(_value), prev(nullptr), next(nullptr) {}
};
class LRUCache {
private:
//哈希结构,保存键值映射
unordered_map<int, DLinkedNode*> cache;
//双向链表头尾结点
DLinkedNode* head;
DLinkedNode* tail;
//存在多少结点
int size;
//容量,总共可以保存多少结点
int capacity;
public:
LRUCache(int _capacity): capacity(_capacity), size(0) {
head = new DLinkedNode();
tail = new DLinkedNode();
head->next = tail;
tail->prev = head;
}
int get(int key) {
//cache.count(key) 返回key元素的个数,若没有返回0
//find() 返回查找元素的位置(迭代器),没有返回 cache.end()
if (!cache.count(key)) {
return -1;
}
//如果key存在,先通过哈希表定位,再将它移动到头部
DLinkedNode* node = cache[key];
moveToHead(node);
return node->value;
}
void put(int key, int value) {
if (!cache.count(key)) {
//如果key不存在,创建一个新的结点
DLinkedNode* node = new DLinkedNode(key, value);
//添加到哈希表
cache[key] = node;
//添加到链表头部
addToHead(node);
++size;
if (size > capacity) {
//如果超过容量,删除链表尾部的结点
DLinkedNode* removed = removeTail();
//删除哈希表中对应的项
cache.erase(removed->key);
delete removed;
--size;
}
}
else {
//如果key存在,先通过哈希表定位,再修改value,并移到头部。
DLinkedNode* node = cache[key];
node->value = value;
moveToHead(node);
}
}
void addToHead(DLinkedNode* node) {
node->prev = head;
node->next = head->next;
head->next->prev = node;
head->next = node;
}
void removeNode(DLinkedNode* node) {
node->prev->next = tail;
node->next->prev = node->prev;
}
void moveToHead(DLinkedNode* node) {
removeNode(node);
addToHead(node);
}
DLinkedNode* removeTail() {
DLinkedNode* node = tail->prev;
removeNode(node);
return node;
}
};