【AC自动机模板】(转自木子日匀大神)

看了昀神的AC自动机,好棒啊~~~好棒啊。。。赶紧转过来了。。。。。


字典树上建失败指针什么的。

一个比较好的方法是稍微修改一下next的定义。

原来next[i][j]表示字典树中i节点的字符为j的儿子节点编号。

现在拓展一下。如果i节点没有字符为j的儿子,那么next[i][j]就是i节点沿着失败指针一直走到有字符为j的儿子的节点编号,如果没有,那么就指向根。

相当于是一个路径压缩的思想吧。这样一来,建立完自动机后,next指针就是很直接的转移关系了,不需要再特意的沿着失败指针跑啊跑的。

这种写法实现起来和用起来都很方便。

struct trie
{
    int next[1100][26],fail[1100],end[1100];
    int L,root;
    int newnode()
    {
        for (int i = 0;i < 26;i++)
            next[L][i] = -1;
        end[L++] = 0;
        return L-1;
    }
    void init()
    {
        L = 0;
        root = newnode();
    }
    void insert(char buf[],int val)
    {
        int len = strlen(buf);
        int now = root;
        for (int i = 0;i < len;i++)
        {
            if (next[now][buf[i]-'a'] == -1)
                next[now][buf[i]-'a'] = newnode();
            now = next[now][buf[i]-'a'];
        }
        end[now] += val;
    }
    void build()
    {
        queue<int> Q;
        for (int i = 0;i < 26;i++)
            if (next[root][i] == -1)
                next[root][i] = root;
            else
            {
                fail[next[root][i]] = root;
                Q.push(next[root][i]);
            }
        while (!Q.empty())
        {
            int now = Q.front();
            Q.pop();
            end[now] += end[fail[now]];
            for (int i = 0;i < 26;i++)
                if (next[now][i] == -1)
                    next[now][i] = next[fail[now]][i];
                else
                {
                    fail[next[now][i]] = next[fail[now]][i];
                    Q.push(next[now][i]);
                }
        }
    }
};



  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是AC自动机Java模板题U301874的代码实现: ```java import java.io.*; import java.util.*; public class Main { static final int MAXN = 100010, MAXM = 200010; static final int INF = 0x3f3f3f3f; static int n, m, cnt; static int[] trie = new int[MAXN * 30], idx = new int[MAXN * 30]; static int[] fail = new int[MAXN * 30], vis = new int[MAXN * 30]; static int[] head = new int[MAXN], nxt = new int[MAXM], ver = new int[MAXM], tot; static int[] deg = new int[MAXN]; static char[][] str = new char[MAXN][30]; static Map<Character, Integer> map = new HashMap<>(); static int add(char[] s) { int p = 0; for (int i = 0; s[i] != '\0'; i++) { char c = s[i]; if (!map.containsKey(c)) { map.put(c, ++cnt); } int u = map.get(c); if (trie[p] == 0) { trie[p] = ++tot; } p = trie[p]; idx[p] = u; } return p; } static void build() { Queue<Integer> q = new LinkedList<>(); for (int i = 1; i <= cnt; i++) { int u = map.get(str[i][0]); if (trie[0] == 0) { trie[0] = ++tot; } int p = trie[0]; idx[p] = 0; if (trie[p + u] == 0) { trie[p + u] = ++tot; } fail[p + u] = p; q.offer(p + u); } while (!q.isEmpty()) { int u = q.poll(); for (int i = head[idx[u]]; i != 0; i = nxt[i]) { int v = ver[i]; int p = fail[u], q = 0; while (p != 0 && trie[p + v] == 0) { p = fail[p]; } if (trie[p + v] != 0) { q = trie[p + v]; } fail[u + v] = q; q.offer(u + v); } } } static void addEdge(int u, int v) { ver[++tot] = v; nxt[tot] = head[u]; head[u] = tot; } static void topo() { Queue<Integer> q = new LinkedList<>(); for (int i = 1; i <= tot; i++) { if (deg[i] == 0) { q.offer(i); } } while (!q.isEmpty()) { int u = q.poll(); vis[u] = 1; for (int i = head[u]; i != 0; i = nxt[i]) { int v = ver[i]; deg[v]--; if (deg[v] == 0) { q.offer(v); } } } } public static void main(String[] args) { Scanner in = new Scanner(System.in); n = in.nextInt(); for (int i = 1; i <= n; i++) { String s = in.next(); str[i] = s.toCharArray(); add(str[i]); } m = in.nextInt(); for (int i = 1; i <= m; i++) { String s = in.next(); int len = s.length(); int p = 0; for (int j = 0; j < len; j++) { char c = s.charAt(j); if (!map.containsKey(c)) { break; } int u = map.get(c); if (trie[p + u] == 0) { break; } p = trie[p + u]; deg[p]++; addEdge(p, p + u); } } build(); topo(); for (int i = 1; i <= n; i++) { int p = 0; for (int j = 0; str[i][j] != '\0'; j++) { p = trie[p + map.get(str[i][j])]; if (vis[p] == 1) { System.out.println("YES"); break; } } if (vis[p] == 0) { System.out.println("NO"); } } } } ``` 该题解释:给定 $n$ 个模式串和 $m$ 个文本串,问每个模式串是否存在于文本串中。其中,模式串和文本串都只包含小写字母。 AC自动机是一种可以高效匹配多个模式串的数据结构。该题需要使用AC自动机进行多模式串匹配。 代码实现中,使用一个trie树存储所有模式串,每个节点记录了下一层的字符和对应的子节点编号。同时,使用一个map记录每个字符对应的编号,以便于在trie树中查找。 在trie树构建完成后,使用广度优先搜索构建fail指针。搜索过程中,对于每个节点 $u$,依次查找其父亲节点 $p$ 直到根节点,若 $p$ 的子节点 $v$ 与 $u$ 的子节点 $w$ 匹配,则令 $u$ 的fail指针指向 $p+v$ 节点。如果 $p+v$ 节点不存在,则继续向根节点搜索。 在fail指针构建完成后,对于每个文本串,从根节点开始依次匹配每个字符,直到匹配完成或者无法匹配。如果最终匹配的节点已经被访问,则说明该模式串存在于文本串中。 时间复杂度为 $O(\sum |P|+|T|)$,其中 $\sum |P|$ 表示所有模式串的长度之和,$|T|$ 表示所有文本串的长度之和。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值