【后缀数组】 HDOJ 1403 Longest Common Substring

简单的后缀数组。。。先把输入的两个串连起来,也就是把第二个字符串连到第一个字符串后面,用一个没出现过的字符隔开。。。我这里用ascii 码 1 隔开。。然后用倍增算法求出sa数组,再求出height数组。。。那么height数组里中由两个分立在那个隔开的字符两边的后缀中的最大值显然是答案。。

#include <iostream>	
#include <sstream>	
#include <algorithm>	
#include <vector>	
#include <queue>	
#include <stack>	
#include <map>	
#include <set>	
#include <bitset>	
#include <cstdio>	
#include <cstring>	
#include <cstdlib>	
#include <cmath>	
#include <climits>	
#define maxn 200005
#define eps 1e-6 
#define mod 10007 
#define INF 99999999	
#define lowbit(x) (x&(-x))	
//#define lson o<<1, L, mid	
//#define rson o<<1 | 1, mid+1, R	
typedef long long LL;
using namespace std;

char s[maxn];
int c[maxn], t[maxn];
int t2[maxn], sa[maxn];
void build(int n, int m)
{
	int i, *x = t, *y = t2, k, p;
	for(i = 0; i < m; i++) c[i] = 0;
	for(i = 0; i < n; i++) c[x[i] = s[i]]++;
	for(i = 1; i < m; i++) c[i] += c[i-1];
	for(i = n-1; i >= 0; i--) sa[--c[x[i]]] = i;
	for(k = 1; k <= n; k<<=1) {
		p = 0;
		for(i = n-k; i < n; i++) y[p++] = i;
		for(i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
		for(i = 0; i < m; i++) c[i] = 0;
		for(i = 0; i < n; i++) c[x[y[i]]]++;
		for(i = 1; i < m; i++) c[i] += c[i-1];
		for(i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
		swap(x, y), p = 1, x[sa[0]] = 0;
		for(i = 1; i < n; i++)
			x[sa[i]] = y[sa[i]] == y[sa[i-1]] && y[sa[i]+k] == y[sa[i-1]+k] ? p-1 : p++;
		if(p >= n) break;
		m = p;
	}
}
int rank[maxn], height[maxn];
void getheight(int n)
{
	int i, j, k = 0;
	for(i = 1; i <= n; i++) rank[sa[i]] = i;
	for(i = 0; i < n; i++) {
		if(k) k--;
		j = sa[rank[i]-1];
		while(s[i+k] == s[j+k]) k++;
		height[rank[i]] = k;
	}
}
void debug(int n)
{
	int i;
	for(i = 0; i <= n; i++)
		printf("%d%d\n", height[i], sa[i]);
}
int main(void)
{
	int tmp, n, ans, i;	
	while(scanf("%s", s)!=EOF) {
		tmp = strlen(s);
		s[tmp] = 1;	
		scanf("%s", s+tmp+1);
		n = strlen(s);
		build(n+1, 128);
		getheight(n);
		ans = 0;
		for(i = 1; i <= n; i++) {
			if((sa[i]-tmp)*(sa[i-1]-tmp)<0)
				if(height[i] > ans)
					ans = height[i];
		}
		printf("%d\n", ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值