Python 二叉树四种遍历方法和反转

(1) 在二叉树中,第i层的结点总数不超过2^(i-1);
(2) 深度为h的二叉树最多有2^h-1个结点(h>=1),最少有h个结点;
(3) 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,
则N0=N2+1;
(4) 具有n个结点的完全二叉树的深度为int(log2n)+1
(5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
若I为结点编号则 如果I<>1,则其父结点的编号为I/2;
如果2*I<=N,则其左儿子(即左子树的根结点)的编号为2*I;若2*I>N,则无左儿子;
如果2*I+1<=N,则其右儿子的结点编号为2*I+1;若2*I+1>N,则无右儿子。
(6)给定N个节点,能构成h(N)种不同的二叉树。
h(N)为卡特兰数的第N项。h(n)=C(n,2*n)/(n+1)。

”’
Created on 2018年2月25日

@author: Administrator
”’
class Node(object):
”’
classdocs
”’

def __init__(self, value=-1,left=None,right=None):
    '''
    Constructor
    '''
    self.item=value
    self.child1=left
    self.child2=right

class Tree(object):
def init(self):
self.root=None

def add(self, item):
    node = Node(item)
    if self.root is None:
        self.root = node
    else:
        q = [self.root]


        while True:
            pop_node = q.pop(0)
            if pop_node.child1 is None:
                pop_node.child1 = node
                return
            elif pop_node.child2 is None:
                pop_node.child2 = node
                return
            else:
                q.append(pop_node.child1)
                q.append(pop_node.child2)


def traverse(self):  # 层次遍历
    if self.root is None:
        return None
    q = [self.root]
    res = [self.root.item]
    while q != []:
        pop_node = q.pop(0)
        if pop_node.child1 is not None:
            q.append(pop_node.child1)
            res.append(pop_node.child1.item)


        if pop_node.child2 is not None:
            q.append(pop_node.child2)
            res.append(pop_node.child2.item)
    return res


def preorder(self,root):  # 先序遍历
    if root is None:
        return []
    result = [root.item]
    left_item = self.preorder(root.child1)
    right_item = self.preorder(root.child2)
    return result + left_item + right_item


def inorder(self,root):  # 中序序遍历
    if root is None:
        return []
    result = [root.item]
    left_item = self.inorder(root.child1)
    right_item = self.inorder(root.child2)
    return left_item + result + right_item


def postorder(self,root):  # 后序遍历
    if root is None:
        return []
    result = [root.item]
    left_item = self.postorder(root.child1)
    right_item = self.postorder(root.child2)
    return left_item + right_item + result
def inverttree(self, treenode):      #真正的翻转只有这8行代码  
    if treenode == None:  
        return None  
    treenode.child1,treenode.child2=treenode.child2,treenode.child1

temp = treenode.child1

treenode.child1 = treenode.child2

treenode.child2 = temp

    self.inverttree(treenode.child1)  
    self.inverttree(treenode.child2) 
def invert_tree(self, node):
    """
    :type node: TreeNode
    :rtype: TreeNode
    """
    if node:
        node.child1, node.child2 = node.child2, node.child1
        if node.child1:
            node.left = self.invert_tree(node.child1)
        if node.child2:
            node.right = self.invert_tree(node.child2)
    return node

def print_tree(self,node=None, is_child=False, deep=3):
    if not node and is_child:
        return

    if not is_child:
        print (node.item)

    if not node.child1 and not node.child2:
        return

    print ("%s> " % node.item, None if not node.child1 else node.child1.item, None if not node.child2 else node.child2.item)
    self.print_tree(node.child1, is_child=True)
    self.print_tree(node.child2, is_child=True)

t = Tree()
for i in range(10):
t.add(i)
print(‘层序遍历:’,t.traverse())
print(t.print_tree(t.root))
print(‘先序遍历:’,t.preorder(t.root))
print(‘中序遍历:’,t.inorder(t.root))
print(‘后序遍历:’,t.postorder(t.root))
print(‘翻转遍历:’,t.inverttree(t.root))
print(‘层序遍历:’,t.traverse())
print(t.print_tree(t.root))

二叉树遍历是指按照一定的顺序遍历二叉树的所有节点。常用的遍历方式有前序遍历、中序遍历和后序遍历。 前序遍历:先访问根节点,再访问左子树,最后访问右子树。即根->左->右的顺序。 中序遍历:先访问左子树,再访问根节点,最后访问右子树。即左->根->右的顺序。 后序遍历:先访问左子树,再访问右子树,最后访问根节点。即左->右->根的顺序。 下面是二叉树遍历的代码实现: ```python # 定义二叉树节点 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # 前序遍历 def preorderTraversal(root): if not root: return [] res = [] stack = [root] while stack: node = stack.pop() if node: res.append(node.val) stack.append(node.right) stack.append(node.left) return res # 中序遍历 def inorderTraversal(root): if not root: return [] res = [] stack = [] while stack or root: while root: stack.append(root) root = root.left node = stack.pop() res.append(node.val) root = node.right return res # 后序遍历 def postorderTraversal(root): if not root: return [] res = [] stack = [root] while stack: node = stack.pop() if node: res.append(node.val) stack.append(node.left) stack.append(node.right) return res[::-1] ``` 以上代码中,我们使用栈来实现遍历。在前序遍历和后序遍历中,我们采用先访问右子树再访问左子树的方式,这样才能保证遍历的顺序是根->左->右或者左->右->根。在中序遍历中,我们需要不断将左子树节点入栈,直到左子树为空为止。然后弹出栈顶节点,再将右子树节点入栈。这样可以保证遍历的顺序是左->根->右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值