【标题】: Equivalent circuit for broadband underwater transducers
【作者】:R. Ramesh and D. D. Ebenezer
【来源】:IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2008, 55(9), 2079-2083
【翻译】:黑烧碱
Abstract:
本文提出了一种确定感兴趣频段内,具有2个谐振点的宽带换能器等效电路的方法。通过用该模型对测量的电导数据进行最小二乘拟合来细化电路参数。通过计算3种宽带换能器的等效电路的电导和电纳,并将它们与测量值进行比较来说明该方法。换能器的等效电路对于换能器设计,以及换能器与功放之间阻抗匹配的滤波器是很有必要的。
I. Introduction
近年来已经开发出具有几乎平坦且高TVR(Transmitting Voltage Response)、超过一倍频程甚至更高频率的宽带换能器[1]。然而,在TVR几乎平坦的频带中,换能器的阻抗存在相当大的变化。一般的做法是使用与换能器并联连接的调谐线圈(电感器),使功率放大器看到的阻抗接近电阻。然而,这种方法仅适用于在感兴趣的频带中阻抗中仅存在一个谐振的情况。
使用压电陶瓷和压电复合材料换能器开发的宽带发射机的阻抗通常在TVR近似平坦的频带中具有不止一个谐振。因此,最近有兴趣找到一种匹配电路,该匹配电路将用作功率放大器和这种换能器之间的接口,以改善功率传输特性[2]。
如果换能器由等效电路表示,则对换能器,匹配滤波器和功率放大器的分析大大简化[3]。如果换能器的等效电路的元件的值是集总的(元件是纯电感器,电容器或电阻器)并且与频率无关,则进一步简化——就像电气元件。
一些作者研究了不同类型换能器的电等效电路。例如,Shuyu [4]研究了由纵向PZT驱动器激发的弯曲板组成的超声换能器的等效电路,用于空气耦合超声波应用。Marshall和Brigham [5]估计了具有低品质因数的传感器的等效电路参数。他们通过电容曲线分析确定了等效电路的4个参数。Sherrit等人[6]提出了压电厚度模式振子的等效电路模型,并从复杂的材料系数估计电路参数。Church和Pincock [7]描述了一种确定谐振或接近谐振的小型声发射器的等效电路参数的方法。然而,这些分析局限于在感兴趣的工作频带中,具有一个共振的换能器。Coates和Maguire [8]从电导纳得到了多模式换能器的等效电路参数的近似表达式。这些数据可以用作后续迭代细化的起始值。
在本文中,提出了一种方法来确定宽带传感器的等效电路,其具有几乎平坦的TVR和感兴趣频带中的阻抗的2个共振。等效电路具有集总频率独立的元件。首先使用7个测量值估计、近似等效电路参数。然后,使用回归分析对它们进行细化。该方法通过计算以下三种等效电路的电导和电纳来说明:1)模制的,自由淹没的,径向极化的压电陶瓷壳,2)Tonpilz宽带换能器,和3)水中的压电复合材料换能器,并用测量值比较它们 。
II. Equivalent Circuit
用于在感兴趣的频带中具有2个谐振的水下压电陶瓷换能器的电等效电路如图1所示。具有[latex]R[/latex],[latex]L[/latex]和[latex]C[/latex]的电路的两个臂中的每一个对应于一个谐振。电阻[latex]R[/latex]对应于模态loss,电感L对应于模态mass,电容[latex]C[/latex]对应于模态compliance。[latex]C_0[/latex]是钳位电容,足以在由于惯性钳位或钳位边界而没有振动时对传感器进行建模。在低频时,电容为[latex]C_0+C_1+C_2[/latex]。
图1中所示的网络的输入电导纳Y可以写成:\begin{equation}\eqalignno{ Y&={I \over V}=G+jB\cr &=j\omega C_{0}+{1 \over \left(R_{1}+j\omega L_{1}+{1 \over j\omega C_{1}}\right)}+{1 \over \left(R_{2}+j\omega L_{2}+{1 \over j\omega C_{2}}\right)},&\hbox{(1)}}\end{equation}
其中G和B分别是输入电导和电纳。下标1和2对应于图1所示等效电路中的第一和第二臂。公式(1)容易重新整理得:\begin{equation}\eqalignno{ G&={R_{1} \over R_{1}^{2}+\left(\omega L_{1}-{1 \over \omega C_{1}}\right)^{2}}+{R_{2} \over R_{2}^{2}+\left(\omega L_{2}-{1 \over \omega C_{2}}\right)^{2}} &\hbox{(2)} }\end{equation}
以及:\begin{equation}\eqalignno{ B&=j\omega C_{0}-{\left(\omega L_{1}-{1 \over \omega C_{1}}\right) \over R_{1}^{2}+\left(\omega L_{1}-{1 \over \omega C_{1}}\right)^{2}}-{\left(\omega L_{2}-{1 \over \omega C_{2}}\right) \over R_{2}^{2}+\left(\omega L_{2}-{1 \over \omega C_{2}}\right)^{2}} &\hbox{(3)} }\end{equation}
通过去除[latex]L_2[/latex],[latex]C_2[/latex]和[latex]R_2[/latex]获得仅具有一个谐振的换能器的等效电路。Ebenezer和Ravi [9]认为空气中的换能器在感兴趣的频带中具有一个共振频率。他们提出了一种通过使用导纳曲线中的6个临界点来确定电路元件值的方法,如图2所示。这些临界点包括:
- 频率[latex]f_s[/latex]的测量值,电导[latex]G[/latex]最大;
- [latex]G[/latex]的最大值([latex]G_{\max}[/latex]);
- 频率[latex]f_x[/latex],小于[latex]f_s[/latex],其中[latex]G\cong G{\max}/ 2[/latex];
- [latex]G[/latex]在[latex]f_x(G_x)[/latex]处的值;
- 频率[latex]f_y[/latex],其中[latex]B[/latex]是局部最大值;
- [latex]B[/latex]的最大值,即[latex]B_y=B_{\max}[/latex]。
它们根据测量值得出电路元件值的显式表达式,因此使得使用该方法非常容易。他们还表明,即使仅使用只有点频率的信息,在谐振附近的所有频率上测量和计算的电导与电纳之间存在良好的一致性。该方法可用于确定水下换能器的近似等效电路。
在该方法[9]中,使用这些关系从频率、[latex]G[/latex]和[latex]B[/latex]的6个值确定电路参数:
\begin{equation}\eqalignno{ &\quad R={1 \over G_{\max}},&\hbox{(4)}\cr & L={\sqrt{\left({R \over G_{x}}-R^{2}\right)}\over \left({\omega_{s}^{2} \over \omega_{x}}-\omega_{x}\right)},&\hbox{(5)}\cr &\qquad C={1 \over L\omega_{s}^{2}},&\hbox{(6)}\cr &C_{0}=\left({1 \over \omega_{y}}\right) \left[B_{y}+{\left(\omega_{y}L-{1 \over \omega_{y}C}\right) \over R^{2}+\left(\omega_{y}L-{1 \over \omega_{y}C}\right)^{2}}\right], &\hbox{(7)} } \end{equation}
其中[latex]w_s=2\pi f_s[/latex],[latex]w_x=2\pi f_x[/latex],[latex]w_y=2\pi f_y[/latex]。
可以通过扩展[9]中使用的方法来确定图1中的7个电路元件的值。然而,这将需要7个联立方程的解。因此,通过找到3种类型的换能器的等效电路来使用和说明替代方法。
在该方法中,独立地确定对应于2个谐振的2个臂的电路元件。首先,图1中所示的[latex]R_1, L_1, C_1[/latex], 和 [latex]C_0[/latex]的值近似地根据公式(4)-(7)通过忽略[latex]R_2, L_2[/latex]和[latex]C_2[/latex]并使用在水中的[latex]f_s, G_{\max}, f_x, G_x, f_y[/latex]和[latex]B_y[/latex]的测量值在第一谐振附近来确定。类似地,通过忽略[latex]R1, L1[/latex]和[latex]C1[/latex]并使用在第二谐振附近的[latex]f_s, G_{\max}, f_x, G_x, f_y[/latex]和[latex]B_y[/latex]的水中测量值,近似地根据公式(4) - (7)确定[latex]R_2, L_2[/latex]和[latex]C_2[/latex]。假设2个谐振不相互干扰,并且它们的电路参数是独立确定的。然而,该假设仅用于获得随后进行的回归分析的近似初始值,因此不会产生太大影响。
III. Regression Analysis
将从(4) - (7)计算的等效电路参数的值用作近似初始值,并且进行非线性回归分析以对它们进行细化。通过最小化测量的电导与使用(2)在感兴趣的频带中的400个点频率计算的电导之间的差的平方和来实现细化。Ramesh和Vishnubhatla [10]用来确定压电复合材料的有效压电系数的方法用于回归分析。在该方法中,使用泰勒级数展开用于等效电路的电导,其中电路元件的值作为变量,并且使用关于这些值的电导的一阶导数的显式表达式。
设[latex]R_1,L_1,C_1,R_2,L_2[/latex]和[latex]C_2[/latex]为前一节中获得的等效电路元件的近似初始值(Initial Values),他们将被改进(refined)。令[latex]\Delta R_1,\Delta L_1,\Delta C_1,\Delta R_2,\Delta L_2和\Delta C_2[/latex]是在每个迭代步骤中确定的这些参数中的误差(Correction)。根据各个校正项产生的泰勒级数中的电导[latex]G(w)[/latex]的扩展:\begin{equation}\eqalignno{ \bar{G}(\omega) & =G\left(\omega, R_{1}, L_{1}, C_{1}, R_{2},L_{2},{\rm C}_{2}\right)\cr &\ +{\partial G \over \partial R_{1}}\Delta R_{1}+{\partial G \over \partial L_{1}}\Delta L_{1}+{\partial G \over \partial C_{1}}\Delta C_{1}&\hbox{(8)}\cr & \ +{\partial G \over \partial R_{2}}\Delta R_{2}+{\partial G \over \partial L_{2}}\Delta L_{2}+{\partial G \over \partial C_{2}}\Delta C_{2}+\ldots}\end{equation}
包含[latex]G[/latex]的二阶导数的高阶项未在(8)中明确示出,并且如果近似初始值接近正确值则可忽略不计。
残差平方和写为:\begin{equation}\eqalignno{S&=\sum_{i=1}^{N}(\bar{G} _{i}(\omega)-G_{i}^{\exp}(\omega))^{2}&\hbox{(9)}}\end{equation}
其中[latex]G(w)[/latex]由(8)给出,[latex]G_i^{exp}(w)[/latex]是测量的电导值,[latex]N[/latex]是数据点的数量。为了使[latex]S[/latex]最小化,[latex]S[/latex]相对于校正项的偏导数等于零。因此,
\begin{equation}\eqalignno{ {\partial S \over \partial(\Delta R_{1})}& =0, {\partial S \over \partial(\Delta L_{1})}=0, {\partial S \over \partial(\Delta C_{1})}=0,&\hbox{(10)}\cr {\partial S \over \partial(\Delta R_{2})}& =0, {\partial S \over \partial(\Delta L_{2})}=0, {\rm and} {\partial S \over \partial(\Delta C_{2})}=0,}\end{equation}
其中[latex]G[/latex]的偏导数相对于电路参数由下式给出:
\begin{equation}\eqalignno{ {\partial G \over \partial R_{j}}&={\left(\omega L_{j}-{1 \over \omega C_{j}}\right)^{2}-R_{j}^{2} \over R_{j}^{2}+\left(\omega L_{j}-{1 \over \omega C_{j}}\right)^{2}},&\hbox{(11)}\cr {\partial G \over \partial L_{j}}& ={-2R_{j}\left(\omega^{2}L_{j}-{1 \over C_{j}}\right) \over R_{j}^{2}+\left(\omega L_{j}-{1 \over \omega C_{j}}\right)^{2}},&\hbox{(12)}\cr {\partial G \over \partial C_{j}} &={2R_{j}\left({1 \over \omega^{2}C_{j}^{3}}-{L_{j} \over C_{j}^{2}}\right)\over R_{j}^{2}+\left(\omega L_{j}-{1 \over \omega C_{j}}\right)^{2}},&\hbox{(13)}}\end{equation}
其中j = 1,2。
通过求解(10)获得校正项[latex]\Delta R_1, \Delta L_1, \Delta C_1, \Delta R_2, \Delta L_2和 \Delta C_2[/latex],并将其加到初始值以获得新的参数组。通过将这些值作为新的初始值集并重复该过程几次来提高准确性。经过几次迭代后,该过程收敛。当系数的连续值的变化小于预设截止因子([latex]C[/latex])时终止,所以有:\begin{equation}\eqalignno{ {a_{i}(k)-a_{i}(k-1) \over a_{i}(k-1)}&\leq C\quad {\rm for}\ i=1\ldots &\hbox{(14)}}\end{equation}
其中,[latex]a_i(k)[/latex]和[latex]a_i(k -1)[/latex]是第[latex]k[/latex]和第[latex]k^{th}[/latex]步的系数的值。[latex]C_0[/latex]的值未被细化,因为它不出现在(2)中的[latex]G[/latex]的表达式中。
正如预期的那样,当导纳的大小用于回归分析,而不是测量的电导时,测量值和计算的导纳量值之间的一致性优于电导和电纳的测量值和计算值之间的一致性。因此,回归分析中使用的函数的选择应基于等效电路的后续使用。
IV. Numerical Results
使用本方法确定1)模制的,自由流动的,径向极化的压电陶瓷壳,2)Tonpilz宽带换能器和3)水中的压电复合换能器的等效电路参数,并使用回归分析进行精炼。使用电路参数的细化值计算电导和电纳,并与测量值进行比较。
所测量的模制的,自由淹没的,径向极化的压电陶瓷圆柱壳的电导和电纳在图3中用虚线示出。使用输入到回归分析的显式表达式获得的电路元件的值和精细值显示在表I中。在这种情况下,细化导致[latex]L_1, C_1[/latex]和[latex]R_2[/latex]的变化小于10%,变化大约为15%. 在[latex]R_1[/latex]中,[latex]L_2[/latex]和[latex]C_2[/latex]的变化约为33%。分别使用(2)和(3)得到的[latex]G[/latex]和[latex]B[/latex],以及表I中给出的初始值在图3中用实线表示。可以看出,测量值和计算值在整个感兴趣的范围内具有相当好的一致性。在图4中,将测量的电导和电纳与使用表I中所示的精细值计算的相应值进行比较。可以看出,一致性甚至比图3中的更好。
图5显示了宽带Tonpilz换能器的电导和电纳。虚线是测量数据,实线是使用表II中给出的等效电路参数的精细值计算的数据。从图中可以看出一致性非常接近。此外,如表II所示,在细化之后,所有电路元件值的变化小于8%。
分析有损频率且在感兴趣的频率范围内具有2个共振的压电复合换能器表明,使用表III中给出的精确值计算的电导与测量数据非常吻合。在电纳的情况下一致性略差,如图6所示。电路参数的初始值和精细值在表III中给出。细化导致所有参数的显著变化(15-33%)。
一般而言,观察到[latex]G[/latex]和[latex]B[/latex]都有很好的一致性,即使在回归分析中仅使用电导。这表明图1中等效电路的形式是合适的。
V. Conclusions
提出了一种确定宽带水下压电陶瓷换能器等效电路的方法。在该方法中,首先使用显式表达式获得电路元件的近似值。然后将这些近似值用作初始值并重复,以最小化所测量的电导与计算的等效电路的电导之间的均方差。发现即使在迭代中仅使用电导,测量电导和计算电导与电纳之间也存在良好的一致性,这表明导纳的相位也被正确表示。该方法使用自由淹没的径向极化压电圆筒,宽带Tonpilz投影仪和压电复合材料发射机的测量数据来说明。使用该方法获得的等效电路可用于分析和设计将发射机与功率放大器连接的匹配滤波器,以确保最大功率传输。
Acknowledgments
作者感谢Sreejith S. Pillai对自由水淹气瓶进行测量,M.R. Subash Chandra Bose为我们提供宽带Tonpilz换能器,以及印度Kochi海军物理和海洋实验室主任(NPOL)的鼓励、提供设施和发表本文的许可。
References
1. S. C. Butler, "Development of a high power broadband doubly resonant transducer", Proc. Underwater Defense Technol. (UDT-2001), 2001.
2. J. M. Lee, H. S. Mok, G. H. Choe, T. M. Kim, D. Y. Kwon, K. T. Han, "Design of power amplifier and matching network for sonar deriving system", Proc. Underwater Defense Technol. (UDT-2002), 2002.
3. D. Stansfield, Underwater Electroacoustic Transducers, UK, Bath:Bath University Press, 1990.
4. L. Shuyu, "Equivalent circuits and directivity patterns of air-coupled ultrasonic transducers", J. Acoust. Soc. Am., vol. 109, no. 3, pp. 949-957, 2001.
5. W. J. Marshall, G. A. Brigham, "Determining equivalent circuit parameters for low figure of merit transducers", Acoust. Res. Lett. Online, vol. 5, no. 3, pp. 106-110, 2004.
6. S. Sherrit, H. D. Wiederick, B. K. Mukherjee, M. Sayer, "An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode", J. Phys. D Appl. Phys., vol. 30, pp. 2354-2363, 1997.
7. D. Church, D. Pincock, "Predicting the electrical equivalent of piezoceramic transducers for small acoustic transmitters", IEEE Trans. Sonics Ultrason., vol. SU-32, no. 1, pp. 61-64, 1985.
View Article Full Text: PDF (339KB) Google Scholar
8. R. Coates, P. T. Maguire, "Multiple-mode acoustic transducer calculations", IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 36, no. 4, pp. 471-473, 1989.
View Article Full Text: PDF (286KB) Google Scholar
9. D. D. Ebenezer, N. Ravi, "An equivalent circuit approach to determine the in-situ radiation impedance of underwater electroacoustic projectors", J. Acoust. Soc. India, vol. 21, pp. 110-115, 1992.
10. R. Ramesh, R. M. R. Vishnubhatla, "Estimation of material parameters of lossy 1-3 piezocomposite plates by non-linear regression analysis", J. Sound Vibrat., vol. 226, no. 3, pp. 573-584, 1999.