排序
一、排序的基本概念与分类
- 内排序:在排序的整个过程中,待排序的所有记录全部被放置在内存中
- 外排序:由于排序的记录个数太多,不能同时放置在内存,整个排序过程需要在内外存之间多次交换数据才能进行
二、冒泡排序
冒泡排序:两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止
对顺序表L作交换排序(冒泡排序初级版)
void BUbbleSort0(SqList *L)
{
int i.j;
for(i=1;i<L->length;i++)
{
for(j=i+1;j<=L->length;j++)
{
if(L->r[i]>L->r[j])
{
swap(L,i,j);//交换L->r[i]与L->r[j]的值
}
}
}
}
对顺序表L作冒泡排序
void BubbleSort(SqList *L)
{
int i.j;
for(i=1;i<L->length;i++)
{
for(j=L->length-1;j>=i;j--)//j是从后往前循环
{
if(L->r[j]>L->r[j+1])
{
swap(L,j,j+1);//交换L->r[j]与L->r[j+1]的值
}
}
}
}
对顺序表L作改进冒泡算法
void BubbleSort2(SqList *L)
{
int i,j;
Status flag=TRUE;//flag用来作为标记
for(i=1;i<L->length&&flag;i++)//若flag为true则退出循环
{
flag=FALSE;//初始化为false
for(j=L->length-1;j>=i;j--)//j是从后往前循环
{
if(L->r[j]>L->r[j+1])
{
swap(L,j,j+1);//交换L->r[j]与L->r[j+1]的值
flag=TRUE;
}
}
}
}
三、简单选择排序
简单选择排序法:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。
对顺序表L作简单选择排序
void SelectSort(SqList *L)
{
int i,j,min;
for(i=1;j<L->length;i++)
{
min=i;//将当前下标定义为最小值下标
for(j=i+1;j<=L->length;j++)//循环之后的数据
{
if(L->r[min]>L->r[j])//如果有小于当前最小值的关键字
{
min=j;//将此关键字的下标赋值给min
}
}
if(i!=min)//若min不等于i,说明找到最小值,交换
{
swap(L,i,min);//交换L->r[i]与L->r[min]的值
}
}
}
四、直接插入排序
直接插入排序:将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增1的有序表
对顺序表L作直接插入排序
void InsertSort(SqList *L)
{
int i,j;
for(i=2;i<=L->length;i++)
{
if(L->r[i]<L->r[i-1])//需将L->r[i]插入有序子表
{
L->r[0]=L->r[i];//设置哨兵
for(j=i-1;L->r[j]>L->r[0];j--)
{
L->r[j+1]=L->r[j];//记录后移
}
L->r[j+1]=L->r[0];//插入到正确位置
}
}
}
五、希尔排序
对顺序表L作希尔排序
void ShelSort(SqList *L)
{
int i,j;
int increment=L->length;
do
{
increment=increment/3+1;//增量序列
for(i=increment+1;i<=L->length;i++)
{
if(L->r[i]<L->r[i-increment])
{
//需将L->r[i]插入有序增量子表
L->r[0]=L->r[i];//暂存在L->r[0]
for(j=i-increment;j>0&&L->r[0]<L->r[i];j-=increment)
{
L->r[j+increment]=L->r[j];//记录后移,查找插入位置
}
L->r[j+increment]=L->r[0];//插入
}
}
}
while(increment>1);
}
六、堆排序
堆是具有下列性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。
堆排序基本思想:将待排序的序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根结点。将它移走(其实就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的n-1个序列重新构造成一个堆,这样就会得到n个元素中的次大值,反复执行,即可得到一个有序序列。
对顺序表L进行堆排序
void HeapSort(SqLIst *L)
{
int i;
for(i=L->length/2;i>0;i--)//把L中的r构建成一个大顶堆
{
HeapAdjust(L,i,L->length);
}
for(i=L->length;i>1;i--)
{
swap(L,1,i);//将堆顶记录和当前未经排序子序列的最后一个记录交换
HeapAdjust(L,1,i-1);//将L->r[1..i-1]重新调整为大顶堆
}
}
HeapAdjust(堆调整)函数的实现
//已知L->r[s..m]中记录的关键字除L->r[s]之外均满足堆的定义
//本函数调整L->r[s]的关键字,使L->r[s..m]成为一个大顶堆
void HeapAdjust(SqList *L,int s,int m)
{
int temp,j;
temp=L->r[s];
for(j=2*s;j<=m;j*=2)//沿关键字较大的孩子结点向下筛选
{
if(j<m&&L->r[j]<L->r[j+1])
{
++j;//j为关键字中较大的记录的下标
}
if(temp>=L->r[j])
{
break;//rc应插入在位置s上
}
L->r[s]=L->r[j];
s=j;
}
L->r[s]=temp;//插入
}
七、归并排序
归并排序的原理:假设初始序列含有n个记录,则可以看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到[n/2]([x]表示不小于x的最小整数)个长度为2或1的有序子序列;再两两归并…,如此重复,直至得到一个长度为n的有序序列为止,这种排序方法叫2路归并排序
对顺序表L作归并排序
void MergeSort(SqList *L)
{
MSort(L->r;L->r,1,L->length);
}
MSort的实现
//将SR[s..t]归并排序为TR1[s..t]
void MSort(int SR[],int TR[],int s,int t)
{
int m;
int TR2[MAXSIZE+1];
if(s==t)
{
TR1[s]=SR[s];
}
else
{
m=(s+t)/2;//将SR[s..t]平方为SR[s..m]和SR[m+1..t]
MSort(SR,TR2,s,m);//递归将SR[s..m]归并为有序的TR2[s..m]
MSort(SR,TR2,m+1,t);//递归将SR[m+1..t]归并为有TR2[m+1..t]
Merge(TR2,TR1,s,m,t);//将TR2[s..m]和TR2[m+1..t]归并到TR1[s..t]
}
}
Merge函数的实现
//将有序的SR[i..m]和SR[m+1..n]归并为有序的TR[i..n]
void Merge(int SR[],int TR[],int i,int m,int n)
{
int j,k,l;
for(j=m+1,k=1;i<=m&&j<=n;k++)//将SR中记录由小到大归并入TR
{
if(SR[i]<SR[j])
{
TR[k]=SR[i++];
}
else
{
TR[k]=SR[j++];
}
}
if(i<=m)
{
for(l=0;l<=m-i;l++)
{
TR[k+1]=SR[i+1];//将剩余的SR[i..m]复制到TR
}
}
if(j<=n)
{
for(l=0;l<=n-j;l++)
{
TR[k+1]=SR[j+1];//将剩余的SR[j..n]复制到TR
}
}
}
对顺序表L作归并非递归排序
void MergeSort2(SqList *L)
{
int *TR=(int*)malloc(L->length*sizeof(int));//申请额外空间
int k=1;
while(k<L->length)
{
MergePass(L->r,TR,k,L->length);
k=2*k;//子序列长度加倍
MergePass(TR,L->r,k,L->length);
k=2*k;//子序列长度加倍
}
}
MergePass代码实现
//将SR[]中相邻长度为s的子序列两两归并到TR[]
void MergePass(int SR[],int TR[],int s,int n)
{
int i=1;
int j;
while(i<=n-2*s+1)
{
Merge(SR,TR,i,i+s-1,i+2*s-1);//两两归并
i=i+2*s;
}
if(i<n-s+1)//归并最后两个序列
{
Merge(SR,TR,i,i+s-1,n);
}
else//若最后只剩下单个子序列
{
for(j=i;j<=b;j++)
{
TR[j]=SR[j];
}
}
}
八、快速排序
快速排序的基本思想:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序的目的
对顺序表L作快速排序
void QuickSort(SqList *L)
{
QSort(L,l,L->length);
}
Qsort的实现
//对顺序表中的子序列L->r[low..high]作快速排序
void QSort(SqList *L,int low,int high)
{
int pivot;
if(low<high)
{
pivot=Partition(L,low,high)//将L->r[low..high]一分为二算出枢轴值pivot
QSort(L,low,pivot-1);//对低子表递归排序
QSort(L,pivot+1,high);//对高子表递归排序
}
}
Partition函数实现
//交换顺序表L中子表的记录,使枢轴记录到位,并返回其所在位置
//此时在它之前(后)的记录均不大(小)于它
int Partition (SqList *L,int low,int high)
{
int pivotkey;
pivotkey=L->r[low];//用子表的第一个记录作枢轴记录
while(low<high)//从表的两端交替向中间扫描
{
while(low<high&&L->r[high]>=pivotkey)
{
high--;
}
swap(L,low,high);//将比枢轴记录小的记录交换到低端
while(low<high&&L->r[low]<=pivotkey)
{
low++;
}
swap(L,low,high);//将此枢轴记录大的记录交换到高端
}
return low;//返回枢轴所在位置
}
快速排序优化算法
int Partition (SqList *L,int low,int high)
{
int pivotkey;
int m=low+(high-low)/2;//计算数组中间的元素的下标
if(L->r[low]>L->r[high])
{
swap(L,low,high);//交换左端和右端数据,保证左端较小
}
if(L->r[m]>L->r[high])
{
swap(L,high,m);//交换中间与右端数据,保证中间较小
}
if(L->r[m]>L->r[low])
{
swap(L,m,low);//交换中间与左端数据,保证左端较小
}
//此时L.r[low]已经为整个序列左中右三个关键字的中间值
pivotkey=L->r[low];//用子表的第一个记录作枢轴记录
L->r[0]=pivotkey;//将枢轴关键字备份到L->r[0]
while(low<high)//从表的两端交替向中间扫描
{
while(low<high&&L->r[high]>=pivotkey)
{
high--;
}
L->r[high]=L->r[low];//采用替换而不是交换的方式进行操作
L->r[low]=L->r[high];//采用替换而不是交换的方式进行操作
swap(L,low,high);//将比枢轴记录小的记录交换到低端
while(low<high&&L->r[low]<=pivotkey)
{
low++;
}
swap(L,low,high);//将此枢轴记录大的记录交换到高端
}
return low;//返回枢轴所在位置
}
改进QSort函数
#define MAX_LENGTH_INSERT_SORT 7//数组长度阈值
//对顺序表中的子序列L->r[low..high]作快速排序
void QSort(SqList *L,int low,int high)
{
int pivot;
if((high-low)>MAX_LENGTH_INSERT_SORT)
{
//当high-low大于常数时用快速排序
pivot=Partition(L,low,high)//将L->r[low..high]一分为二算出枢轴值pivot
QSort(L,low,pivot-1);//对低子表递归排序
QSort(L,pivot+1,high);//对高子表递归排序
}
else//当high-low小于或等于常数时直接插入排序
{
InsertSort(L);
}
}
对QSort实施尾递归优化
#define MAX_LENGTH_INSERT_SORT 7//数组长度阈值
//对顺序表中的子序列L->r[low..high]作快速排序
void QSort(SqList *L,int low,int high)
{
int pivot;
if((high-low)>MAX_LENGTH_INSERT_SORT)
{
while(low<high)
{
//当high-low大于常数时用快速排序
pivot=Partition(L,low,high)//将L->r[low..high]一分为二算出枢轴值pivot
QSort(L,low,pivot-1);//对低子表递归排序
low=pivot+1;//尾递归
}
}
else//当high-low小于或等于常数时直接插入排序
{
InsertSort(L);
}
}