排序

排序

一、排序的基本概念与分类

  • 内排序:在排序的整个过程中,待排序的所有记录全部被放置在内存中
  • 外排序:由于排序的记录个数太多,不能同时放置在内存,整个排序过程需要在内外存之间多次交换数据才能进行

二、冒泡排序

冒泡排序:两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止

对顺序表L作交换排序(冒泡排序初级版)

void BUbbleSort0(SqList *L)
{
    int i.j;
    for(i=1;i<L->length;i++)
    {
        for(j=i+1;j<=L->length;j++)
        {
            if(L->r[i]>L->r[j])
            {
                swap(L,i,j);//交换L->r[i]与L->r[j]的值
            }
        }
    }
}

对顺序表L作冒泡排序

void BubbleSort(SqList *L)
{
    int i.j;
    for(i=1;i<L->length;i++)
    {
        for(j=L->length-1;j>=i;j--)//j是从后往前循环
        {
            if(L->r[j]>L->r[j+1])
            {
                swap(L,j,j+1);//交换L->r[j]与L->r[j+1]的值
            }
        }
    }
}

对顺序表L作改进冒泡算法

void BubbleSort2(SqList *L)
{
    int i,j;
    Status flag=TRUE;//flag用来作为标记
    for(i=1;i<L->length&&flag;i++)//若flag为true则退出循环
    {
        flag=FALSE;//初始化为false
        for(j=L->length-1;j>=i;j--)//j是从后往前循环
        {
            if(L->r[j]>L->r[j+1])
            {
                swap(L,j,j+1);//交换L->r[j]与L->r[j+1]的值
                flag=TRUE;
            }
        }
    }
}

三、简单选择排序

简单选择排序法:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。

对顺序表L作简单选择排序

void SelectSort(SqList *L)
{
    int i,j,min;
    for(i=1;j<L->length;i++)
    {
        min=i;//将当前下标定义为最小值下标
        for(j=i+1;j<=L->length;j++)//循环之后的数据
        {
            if(L->r[min]>L->r[j])//如果有小于当前最小值的关键字
            {
                min=j;//将此关键字的下标赋值给min
            }
        }
        if(i!=min)//若min不等于i,说明找到最小值,交换
        {
            swap(L,i,min);//交换L->r[i]与L->r[min]的值
        }
    }
}

四、直接插入排序

直接插入排序:将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增1的有序表

对顺序表L作直接插入排序

void InsertSort(SqList *L)
{
    int i,j;
    for(i=2;i<=L->length;i++)
    {
        if(L->r[i]<L->r[i-1])//需将L->r[i]插入有序子表
        {
            L->r[0]=L->r[i];//设置哨兵
            for(j=i-1;L->r[j]>L->r[0];j--)
            {
                L->r[j+1]=L->r[j];//记录后移
               
            }
            L->r[j+1]=L->r[0];//插入到正确位置 
        }
    }
}

五、希尔排序

对顺序表L作希尔排序

void ShelSort(SqList *L)
{
    int i,j;
    int increment=L->length;
    do
    {
        increment=increment/3+1;//增量序列
        for(i=increment+1;i<=L->length;i++)
        {
            if(L->r[i]<L->r[i-increment])
            {
                //需将L->r[i]插入有序增量子表
                L->r[0]=L->r[i];//暂存在L->r[0]
                for(j=i-increment;j>0&&L->r[0]<L->r[i];j-=increment)
                {
                    L->r[j+increment]=L->r[j];//记录后移,查找插入位置
                }
                L->r[j+increment]=L->r[0];//插入
            }
        }
            
    }
    while(increment>1);
    
}

六、堆排序

堆是具有下列性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。

堆排序基本思想:将待排序的序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根结点。将它移走(其实就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的n-1个序列重新构造成一个堆,这样就会得到n个元素中的次大值,反复执行,即可得到一个有序序列。

对顺序表L进行堆排序

void HeapSort(SqLIst *L)
{
    int i;
    for(i=L->length/2;i>0;i--)//把L中的r构建成一个大顶堆
    {
        HeapAdjust(L,i,L->length);
    }
    for(i=L->length;i>1;i--)
    {
        swap(L,1,i);//将堆顶记录和当前未经排序子序列的最后一个记录交换
        HeapAdjust(L,1,i-1);//将L->r[1..i-1]重新调整为大顶堆
    }
}

HeapAdjust(堆调整)函数的实现

//已知L->r[s..m]中记录的关键字除L->r[s]之外均满足堆的定义
//本函数调整L->r[s]的关键字,使L->r[s..m]成为一个大顶堆
void HeapAdjust(SqList *L,int s,int m)
{
    int temp,j;
    temp=L->r[s];
    for(j=2*s;j<=m;j*=2)//沿关键字较大的孩子结点向下筛选
    {
        if(j<m&&L->r[j]<L->r[j+1])
        {
            ++j;//j为关键字中较大的记录的下标
        }
        if(temp>=L->r[j])
        {
            break;//rc应插入在位置s上
        }
        L->r[s]=L->r[j];
        s=j;
    }
    L->r[s]=temp;//插入
}

七、归并排序

归并排序的原理:假设初始序列含有n个记录,则可以看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到[n/2]([x]表示不小于x的最小整数)个长度为2或1的有序子序列;再两两归并…,如此重复,直至得到一个长度为n的有序序列为止,这种排序方法叫2路归并排序

对顺序表L作归并排序

void MergeSort(SqList *L)
{
    MSort(L->r;L->r,1,L->length);
}

MSort的实现

//将SR[s..t]归并排序为TR1[s..t]
void MSort(int SR[],int TR[],int s,int t)
{
    int m;
    int TR2[MAXSIZE+1];
    if(s==t)
    {
        TR1[s]=SR[s];
    }
    else
    {
        m=(s+t)/2;//将SR[s..t]平方为SR[s..m]和SR[m+1..t]
        MSort(SR,TR2,s,m);//递归将SR[s..m]归并为有序的TR2[s..m]
        MSort(SR,TR2,m+1,t);//递归将SR[m+1..t]归并为有TR2[m+1..t]
        Merge(TR2,TR1,s,m,t);//将TR2[s..m]和TR2[m+1..t]归并到TR1[s..t]
    }
}

Merge函数的实现

//将有序的SR[i..m]和SR[m+1..n]归并为有序的TR[i..n]
void Merge(int SR[],int TR[],int i,int m,int n)
{
    int j,k,l;
    for(j=m+1,k=1;i<=m&&j<=n;k++)//将SR中记录由小到大归并入TR
    {
        if(SR[i]<SR[j])
        {
            TR[k]=SR[i++];
        }
        else
        {
            TR[k]=SR[j++];
        }
        
    }
    if(i<=m)
    {
        for(l=0;l<=m-i;l++)
        {
            TR[k+1]=SR[i+1];//将剩余的SR[i..m]复制到TR
        }
    }
    if(j<=n)
    {
        for(l=0;l<=n-j;l++)
        {
            TR[k+1]=SR[j+1];//将剩余的SR[j..n]复制到TR
        }
    }
}

对顺序表L作归并非递归排序

void MergeSort2(SqList *L)
{
    int *TR=(int*)malloc(L->length*sizeof(int));//申请额外空间
    int k=1;
    while(k<L->length)
    {
        MergePass(L->r,TR,k,L->length);
        k=2*k;//子序列长度加倍
        MergePass(TR,L->r,k,L->length);
        k=2*k;//子序列长度加倍
    }
}

MergePass代码实现

//将SR[]中相邻长度为s的子序列两两归并到TR[]
void MergePass(int SR[],int TR[],int s,int n)
{
    int i=1;
    int j;
    while(i<=n-2*s+1)
    {
        Merge(SR,TR,i,i+s-1,i+2*s-1);//两两归并
        i=i+2*s;
    }
    if(i<n-s+1)//归并最后两个序列
    {
        Merge(SR,TR,i,i+s-1,n);
    }
    else//若最后只剩下单个子序列
    {
        for(j=i;j<=b;j++)
        {
            TR[j]=SR[j];
        }
    }
}

八、快速排序

快速排序的基本思想:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序的目的

对顺序表L作快速排序

void QuickSort(SqList *L)
{
    QSort(L,l,L->length);
}

Qsort的实现

//对顺序表中的子序列L->r[low..high]作快速排序
void QSort(SqList *L,int low,int high)
{
    int pivot;
    if(low<high)
    {
        pivot=Partition(L,low,high)//将L->r[low..high]一分为二算出枢轴值pivot
        QSort(L,low,pivot-1);//对低子表递归排序
        QSort(L,pivot+1,high);//对高子表递归排序
    }
}

Partition函数实现

//交换顺序表L中子表的记录,使枢轴记录到位,并返回其所在位置
//此时在它之前(后)的记录均不大(小)于它
int Partition (SqList *L,int low,int high)
{
    int pivotkey;
    pivotkey=L->r[low];//用子表的第一个记录作枢轴记录
    while(low<high)//从表的两端交替向中间扫描
    {
        while(low<high&&L->r[high]>=pivotkey)
        {
            high--;
        }
        swap(L,low,high);//将比枢轴记录小的记录交换到低端
        while(low<high&&L->r[low]<=pivotkey)
        {
            low++;
        }
        swap(L,low,high);//将此枢轴记录大的记录交换到高端
    }
    return low;//返回枢轴所在位置
}

快速排序优化算法

int Partition (SqList *L,int low,int high)
{
    int pivotkey;
    int m=low+(high-low)/2;//计算数组中间的元素的下标
    if(L->r[low]>L->r[high])
    {
        swap(L,low,high);//交换左端和右端数据,保证左端较小
    }
    if(L->r[m]>L->r[high])
    {
        swap(L,high,m);//交换中间与右端数据,保证中间较小
    }
    if(L->r[m]>L->r[low])
    {
        swap(L,m,low);//交换中间与左端数据,保证左端较小
    }
    //此时L.r[low]已经为整个序列左中右三个关键字的中间值
    pivotkey=L->r[low];//用子表的第一个记录作枢轴记录
    L->r[0]=pivotkey;//将枢轴关键字备份到L->r[0]
    while(low<high)//从表的两端交替向中间扫描
    {
        while(low<high&&L->r[high]>=pivotkey)
        {
            high--;
        }
        L->r[high]=L->r[low];//采用替换而不是交换的方式进行操作
        L->r[low]=L->r[high];//采用替换而不是交换的方式进行操作
        swap(L,low,high);//将比枢轴记录小的记录交换到低端
        while(low<high&&L->r[low]<=pivotkey)
        {
            low++;
        }
        swap(L,low,high);//将此枢轴记录大的记录交换到高端
    }
    return low;//返回枢轴所在位置
}

改进QSort函数

#define MAX_LENGTH_INSERT_SORT 7//数组长度阈值
//对顺序表中的子序列L->r[low..high]作快速排序
void QSort(SqList *L,int low,int high)
{
    int pivot;
    if((high-low)>MAX_LENGTH_INSERT_SORT)
    {
        //当high-low大于常数时用快速排序
        pivot=Partition(L,low,high)//将L->r[low..high]一分为二算出枢轴值pivot
        QSort(L,low,pivot-1);//对低子表递归排序
        QSort(L,pivot+1,high);//对高子表递归排序
    }
    else//当high-low小于或等于常数时直接插入排序
    {
        InsertSort(L);
    }
}

对QSort实施尾递归优化

#define MAX_LENGTH_INSERT_SORT 7//数组长度阈值
//对顺序表中的子序列L->r[low..high]作快速排序
void QSort(SqList *L,int low,int high)
{
    int pivot;
    if((high-low)>MAX_LENGTH_INSERT_SORT)
    {
        while(low<high)
        {
        	//当high-low大于常数时用快速排序
        	pivot=Partition(L,low,high)//将L->r[low..high]一分为二算出枢轴值pivot
        	QSort(L,low,pivot-1);//对低子表递归排序
        	low=pivot+1;//尾递归
        }
    }
    else//当high-low小于或等于常数时直接插入排序
    {
        InsertSort(L);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值