5-1 N个数求和 (20分)
本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N(\le≤100)。随后一行按格式a1/b1 a2/b2 …给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
输出样例1:
3 1/3
输入样例2:
2
4/3 2/3
输出样例2:
2
输入样例3:
3
1/3 -1/6 1/8
输出样例3:
7/24
一开始没有过一个样例,wtf?然后发现了这里的long long 不能用%I64d 来,要用%lld。。以后碰到long long 就直接cin cout呗~~~
然后注意要考虑值为0的情况
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
long long p1[105];
long long p2[105];
long long gcd(long long a,long long b)
{
if(b==0) return a;
return gcd(b,a%b);
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%lld/%lld",&p1[i],&p2[i]);
long long fm=p2[0],fz=p1[0];
for(int i=1;i<n;i++)
{
long long g=gcd(fm,p2[i]);
long long c=(p2[i]/g)*fm;
fz=fz*(c/fm)+p1[i]*(c/p2[i]);
fm=c;
}
if(fz==0)
printf("0");
else{
long long k=gcd(fm,fz);
fm=fm/k;
fz=fz/k;
int flag=0;
if(fz/fm!=0){
printf("%lld",fz/fm);flag=1;}
fz=fz%fm;
if(fz!=0)
{
long long l=gcd(fm,fz);
fm=fm/l;
fz=fz/l;
if(flag==1) printf(" ");
printf("%lld/%lld",fz,fm);
}
}
printf("\n");
return 0;
}