N个数求和

5-1 N个数求和 (20分)
本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。
输入格式:

输入第一行给出一个正整数N(\le≤100)。随后一行按格式a1/b1 a2/b2 …给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:

输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:

5
2/5 4/15 1/30 -2/60 8/3
输出样例1:

3 1/3
输入样例2:

2
4/3 2/3
输出样例2:

2
输入样例3:

3
1/3 -1/6 1/8
输出样例3:

7/24

一开始没有过一个样例,wtf?然后发现了这里的long long 不能用%I64d 来,要用%lld。。以后碰到long long 就直接cin cout呗~~~
然后注意要考虑值为0的情况

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>


using namespace std;
long long p1[105];
long long p2[105];
long long gcd(long long a,long long b)
{
  if(b==0) return a;
  return gcd(b,a%b);
}
int main()
{
  int n;
  scanf("%d",&n);
  for(int i=0;i<n;i++)
    scanf("%lld/%lld",&p1[i],&p2[i]);
  long long fm=p2[0],fz=p1[0];
  for(int i=1;i<n;i++)
  {
    long long g=gcd(fm,p2[i]);
    long long c=(p2[i]/g)*fm;
    fz=fz*(c/fm)+p1[i]*(c/p2[i]);
    fm=c;
  }
  if(fz==0)
    printf("0");
  else{
  long long k=gcd(fm,fz);
  fm=fm/k;
  fz=fz/k;
  int flag=0;
  if(fz/fm!=0){
    printf("%lld",fz/fm);flag=1;}
  fz=fz%fm;
  if(fz!=0)
  {
    long long l=gcd(fm,fz);
    fm=fm/l;
    fz=fz/l;
    if(flag==1) printf(" ");
    printf("%lld/%lld",fz,fm);
    }
  }
  printf("\n");
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值