题意:给你l,r,问你在这个区间中the sum of the power of the integers
一个数能被另外一个数的a次方表示的,power of the integers 是最大的a
2<=l<=r<=10^18
这个并不是一般的那种容斥原理。
因为这个指数我们知道是在61之内的,然后我们可以枚举指数,然后dp[i]中存指数为i的数的个数,我们求个数的时候,,那个防溢出的真的是…….
去重是从后往前减。因为我们要求对应i的dp[i],而不是总数。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <queue>
using namespace std;
#define LL long long
const int maxn = 100;
#define inf 1e18
LL dp[maxn];
LL a(LL x,int n)
{
LL ans=1,q=x;
while(n)
{
if(n&1) {
double tmp=1.0*inf/ans;
if(q>tmp) return -1;
ans=ans*q;
}
n>>=1;
q=q*q;
}
return ans;
}
LL aa(LL n,LL i)
{
LL k=(LL)pow(n,1.0/i);
LL l=a(k-1,i),r=a(k+1,i),mid=a(k,i);
LL ans=0;
if(r<=n&&r>0) ans=k+1;
else if(mid<=n&&mid>0) ans=k;
else if(l<=n&&l>0) ans=k-1;
return ans;
}
LL solve(LL n)
{
memset(dp,0,sizeof(dp));
if(n==1) return 1;
dp[1]=n;
int i;
for(i=2;i<62;i++)
{
dp[i]=aa(n,i)-1;
if(dp[i]<=0) break;
}
for(int k=i-1;k>=1;k--)
{
for(int j=1;j<k;j++)
{
if(k%j==0) dp[j]-=dp[k];
}
}
LL ans=0;
for(int h=1;h<i;h++)
ans+=dp[h]*h;
return ans;
}
int main()
{
LL a,b;
while(scanf("%I64d %I64d",&a,&b)!=EOF)
{
if(a==0&&b==0) break;
LL a1=solve(b);
LL a2=solve(a-1);
printf("%I64d\n",a1-a2);
}
return 0;
}