海明码是一种线性错误校正码,通过添加校验位(也称为冗余位)来检测和纠正单个位错误

  1. 首先明确海明码中信息位 (n)、校验位 (k) 之间的关系:
    • 海明码要能发现并纠正 1 位出错的情况,必须满足 (2^{k}\geq n + k + 1)。
    • 这里信息位 (n = 8)。
  2. 然后通过计算确定校验位 (k) 的位数:
    • 当 (k = 3) 时,(2^{3}=8),(n + k + 1=8 + 3 + 1 = 12),因为 (8<12),不满足 (2^{k}\geq n + k + 1)。
    • 当 (k = 4) 时,(2^{4}=16),(n + k + 1=8 + 4 + 1 = 12),此时 (16\geq12),满足 (2^{k}\geq n + k + 1)。

所以校验位的位数至少为 (4),而不是 (3)。

综上所述,设信息位是 8 位,用海明码来发现并纠正 1 位出错的情况,则校验位的位数至少为 (4)。
为了确定使用海明码来发现并纠正1位出错的情况时,校验位的位数至少为多少,我们需要考虑海明码的性质和编码规则。

海明码的基本原理

海明码是一种线性错误校正码,它可以通过添加校验位来发现并纠正单个位的错误。海明码的编码规则是:

  • 信息位(数据位)和校验位(冗余位)组合在一起形成码字。
  • 每个校验位负责检查信息位和校验位的特定组合,以确保码字的奇偶性。

海明码的校验位数

对于一个长度为 ( n ) 的码字,其中包含 ( k ) 个信息位和 ( r ) 个校验位,海明码的校验位数 ( r ) 必须满足以下条件:
[ 2^r - 1 \geq n ]
其中 ( n = k + r )。

问题分析

在本问题中,信息位 ( k ) 是8位。我们需要找到最小的 ( r ) 使得:
[ 2^r - 1 \geq 8 + r ]

我们可以通过尝试不同的 ( r ) 值来找到满足条件的最小值。

  1. 当 ( r = 3 ) 时:
    [ 2^3 - 1 = 8 - 1 = 7 ]
    [ 7 \geq 8 + 3 ]
    [ 7 \geq 11 ] (不成立)

  2. 当 ( r = 4 ) 时:
    [ 2^4 - 1 = 16 - 1 = 15 ]
    [ 15 \geq 8 + 4 ]
    [ 15 \geq 12 ] (成立)

因此,当 ( r = 4 ) 时,满足条件 ( 2^r - 1 \geq 8 + r )。

结论

为了使用海明码来发现并纠正1位出错的情况,校验位的位数至少为4。

[
\boxed{4}
]
海明码是一种可以纠正一位差错的编码,其校验规则如下:

校验位的确定

设信息位为(n)位,校验位为(k)位,要满足(2^{k}\geq n + k + 1)。例如,对于(8)位信息位,根据上述公式可计算出至少需要(4)位校验位。

校验位的位置

校验位(P_{i})位于(2^{i - 1})的位置上,即(P_{1})在第(1)位,(P_{2})在第(2)位,(P_{3})在第(4)位,(P_{4})在第(8)位等。

海明码的构成

信息位按照从左到右的顺序依次填入海明码中除校验位之外的位置。例如,对于(8)位信息位(D_{7}D_{6}D_{5}D_{4}D_{3}D_{2}D_{1}D_{0})和(4)位校验位(P_{4}P_{3}P_{2}P_{1}),构成的海明码为(H_{12}H_{11}H_{10}H_{9}H_{8}H_{7}H_{6}H_{5}H_{4}H_{3}H_{2}H_{1}),其中(H_{1}=P_{1}),(H_{2}=P_{2}),(H_{4}=P_{3}),(H_{8}=P_{4}),其余位置依次填入信息位。

校验位的计算

  • (P_{1})校验的位是海明码中第(1)位、第(3)位、第(5)位、第(7)位、第(9)位、第(11)位等,即(H_{i})中(i)的二进制表示中最低位为(1)的那些位。(P_{1})的值为这些位的异或((\oplus))结果,即(P_{1}=D_{0}\oplus D_{1}\oplus D_{3}\oplus D_{4}\oplus D_{6}\oplus D_{7})。
  • (P_{2})校验的位是海明码中第(2)位、第(3)位、第(6)位、第(7)位、第(10)位、第(11)位等,即(H_{i})中(i)的二进制表示中从右数第(2)位为(1)的那些位。(P_{2}=D_{0}\oplus D_{2}\oplus D_{3}\oplus D_{5}\oplus D_{6})。
  • (P_{3})校验的位是海明码中第(4)位、第(5)位、第(6)位、第(7)位、第(12)位等,即(H_{i})中(i)的二进制表示中从右数第(3)位为(1)的那些位。(P_{3}=D_{1}\oplus D_{2}\oplus D_{3}\oplus D_{7})。
  • (P_{4})校验的位是海明码中第(8)位、第(9)位、第(10)位、第(11)位、第(12)位等,即(H_{i})中(i)的二进制表示中从右数第(4)位为(1)的那些位。(P_{4}=D_{4}\oplus D_{5}\oplus D_{6}\oplus D_{7})。

校验和纠错

接收端收到海明码后,按照同样的规则计算校验位。假设计算得到的校验位为(S_{4}S_{3}S_{2}S_{1}),将其与接收到的校验位进行比较。

  • 如果(S_{4}S_{3}S_{2}S_{1}=0000),则表示传输无错误。
  • 如果(S_{4}S_{3}S_{2}S_{1}\neq0000),则表示传输有错误,(S_{4}S_{3}S_{2}S_{1})的值就是错误位的海明码编号。例如,如果(S_{4}S_{3}S_{2}S_{1}=0101),则表示第(5)位出错,将该位取反即可纠正错误。
  • 海明码是一种线性错误校正码,通过添加校验位(也称为冗余位)来检测和纠正单个位错误。海明码的校验位工作原理基于奇偶校验的概念,每个校验位负责检查码字中特定位置的位,以确保这些位的奇偶性。以下是海明码校验位的工作原理的详细解释:

1. 海明码的基本结构

假设我们有 ( k ) 个信息位和 ( r ) 个校验位,形成一个长度为 ( n = k + r ) 的码字。校验位的位置通常选择为2的幂次位置(即1, 2, 4, 8, …)。

2. 校验位的计算

每个校验位负责检查码字中特定位置的位,这些位置通过校验位的位置来确定。具体来说,第 ( i ) 个校验位(位置为 ( 2^{i-1} ))负责检查所有位置为 ( 2^{i-1} ) 的倍数的位。

示例

假设我们有4个校验位和8个信息位,形成一个12位的码字。校验位的位置为1, 2, 4, 8。信息位的位置为3, 5, 6, 7, 9, 10, 11, 12。

3. 校验位的计算方法

每个校验位的值通过计算其负责的位的奇偶性来确定。通常使用偶校验,即校验位的值使得其负责的位的总和为偶数。

示例

假设信息位为 ( d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8 ),校验位为 ( p_1, p_2, p_3, p_4 )。

  • 校验位 ( p_1 )(位置1)

    • 负责位置1, 3, 5, 7, 9, 11的位。
    • 计算方法: ( p_1 = d_1 \oplus d_3 \oplus d_5 \oplus d_7 \oplus d_9 \oplus d_{11} )
  • 校验位 ( p_2 )(位置2)

    • 负责位置2, 3, 6, 7, 10, 11的位。
    • 计算方法: ( p_2 = d_2 \oplus d_3 \oplus d_6 \oplus d_7 \oplus d_{10} \oplus d_{11} )
  • 校验位 ( p_3 )(位置4)

    • 负责位置4, 5, 6, 7, 12的位。
    • 计算方法: ( p_3 = d_4 \oplus d_5 \oplus d_6 \oplus d_7 \oplus d_{12} )
  • 校验位 ( p_4 )(位置8)

    • 负责位置8, 9, 10, 11, 12的位。
    • 计算方法: ( p_4 = d_8 \oplus d_9 \oplus d_{10} \oplus d_{11} \oplus d_{12} )

4. 错误检测与纠正

在接收端,接收方会重新计算每个校验位的值,并与接收到的校验位进行比较。如果某个校验位的计算值与接收到的值不一致,说明存在错误。

错误位置的确定

通过将所有校验位的值组合成一个二进制数,可以确定错误的位置。例如,如果校验位 ( p_1, p_2, p_3, p_4 ) 的计算值分别为1, 0, 1, 1,那么错误的位置为 ( 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 1 \times 2^3 = 13 )。如果计算的二进制数为0,说明没有错误。

5. 示例

假设信息位为 ( d_1 = 1, d_2 = 0, d_3 = 1, d_4 = 0, d_5 = 1, d_6 = 0, d_7 = 1, d_8 = 0 )。

  • 计算校验位

    • ( p_1 = d_1 \oplus d_3 \oplus d_5 \oplus d_7 \oplus d_9 \oplus d_{11} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 0 )
    • ( p_2 = d_2 \oplus d_3 \oplus d_6 \oplus d_7 \oplus d_{10} \oplus d_{11} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0 )
    • ( p_3 = d_4 \oplus d_5 \oplus d_6 \oplus d_7 \oplus d_{12} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 0 )
    • ( p_4 = d_8 \oplus d_9 \oplus d_{10} \oplus d_{11} \oplus d_{12} = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0 )
  • 码字: ( p_1 p_2 d_1 p_3 d_2 d_3 d_4 p_4 d_5 d_6 d_7 d_8 = 001001000000 )

假设在传输过程中,第7位发生了错误,接收到的码字为 ( 001001100000 )。

  • 重新计算校验位

    • ( p_1’ = d_1 \oplus d_3 \oplus d_5 \oplus d_7 \oplus d_9 \oplus d_{11} = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 1 )
    • ( p_2’ = d_2 \oplus d_3 \oplus d_6 \oplus d_7 \oplus d_{10} \oplus d_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 1 )
    • ( p_3’ = d_4 \oplus d_5 \oplus d_6 \oplus d_7 \oplus d_{12} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 1 )
    • ( p_4’ = d_8 \oplus d_9 \oplus d_{10} \oplus d_{11} \oplus d_{12} = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0 )
  • 错误位置: ( 1 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 + 0 \times 2^3 = 7 )

  • 纠正错误:将第7位从1纠正为0,恢复正确的码字 ( 001001000000 )。

总结

海明码的校验位通过奇偶校验来检测和纠正单个位错误。每个校验位负责检查码字中特定位置的位,通过计算这些位的奇偶性来确定校验位的值。在接收端,通过重新计算校验位的值并比较接收到的校验位,可以确定错误的位置并进行纠正。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bol5261

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值