简单常用滤波算法C语言实现

1.限幅滤波算法(程序判断滤波算法)

方法解析:

根据经验判断,确定两次采样允许的最大偏差值(设定为A),每次检测到新值时判断:

如果本次值与上次值之差<=A,则本次值有效,

如果本次值与上次值只差>A,则本次值无效,放弃本次值,用上次值代替本次值。

优点:

能有效克服因偶然因素引起的脉冲干扰

缺点:

无法抑制那种周期性的干扰,平滑度差

  1. #define A 10  
  2. char value;  
  3. char filter()  
  4. {  
  5.    char  new_value;  
  6.    new_value = get_ad();  
  7.    if ( ( new_value - value > A ) || ( value - new_value > A )  
  8.       return value;  
  9.    return new_value;  
  10. }  
#define A 10
char value;
char filter()
{
   char  new_value;
   new_value = get_ad();
   if ( ( new_value - value > A ) || ( value - new_value > A )
      return value;
   return new_value;
}


2.中位值滤波法

方法解析:

连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值

优点:

能有效克服因偶然因素引起的波动干扰,对温度,液位的变化缓慢的被测参数有良好的滤波效果

缺点:

对流量,速度等快速变化的参数不宜

  1. #define N  11  
  2. char filter()  
  3. {  
  4.    char value_buf[N];  
  5.    char count,i,j,temp;  
  6.    for ( count=0;count<N;count++)  
  7.    {  
  8.       value_buf[count] = get_ad();  
  9.       delay();  
  10.    }  
  11.    for (j=0;j<N-1;j++)  
  12.    {  
  13.       for (i=0;i<N-j;i++)  
  14.       {  
  15.          if ( value_buf[i]>value_buf[i+1] )  
  16.          {  
  17.             temp = value_buf[i];  
  18.             value_buf[i] = value_buf[i+1];   
  19.              value_buf[i+1] = temp;  
  20.          }  
  21.       }  
  22.    }  
  23.    return value_buf[(N-1)/2];  
  24. }  
#define N  11
char filter()
{
   char value_buf[N];
   char count,i,j,temp;
   for ( count=0;count<N;count++)
   {
      value_buf[count] = get_ad();
      delay();
   }
   for (j=0;j<N-1;j++)
   {
      for (i=0;i<N-j;i++)
      {
         if ( value_buf[i]>value_buf[i+1] )
         {
            temp = value_buf[i];
            value_buf[i] = value_buf[i+1]; 
             value_buf[i+1] = temp;
         }
      }
   }
   return value_buf[(N-1)/2];
}

3.算术平均滤波

方法解析:

连续取N个采样值进行平均运算,N值较大时:信号平滑度较高,但灵敏度较低

N值较小时:信号平滑度较低,但灵敏度较高。N值的选取:一般12左右。

优点:

适应于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动

缺点:

对于测量速度较慢或要求数据计算速度较快的实时控制并不适用,比较浪费RAM

  1. #define N 12  
  2. char filter()  
  3. {  
  4.    int  sum = 0;  
  5.    for ( count=0;count<N;count++)  
  6.    {  
  7.       sum + = get_ad();  
  8.       delay();  
  9.    }  
  10.    return (char)(sum/N);  
#define N 12
char filter()
{
   int  sum = 0;
   for ( count=0;count<N;count++)
   {
      sum + = get_ad();
      delay();
   }
   return (char)(sum/N);


4.递推平均滤波(滑动平均滤波法)

方法解析:

把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出)。

把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:一般12.

优点:

对周期性干扰有良好的抑制作用,平滑度高,适应于高频振荡的系统

缺点:

灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差。不易消除由于脉冲干扰所引起打的采样值偏差,不适用于脉冲干扰比较严重的场合

浪费RAM

  1. #define N 12   
  2. char value_buf[N];  
  3. char i=0;  
  4. char filter()  
  5. {  
  6.    char count;  
  7.    int  sum=0;  
  8.    value_buf[i++] = get_ad();  
  9.    if ( i == N )   i = 0;  
  10.    for ( count=0;count<N,count++)  
  11.       sum = value_buf[count];  
  12.    return (char)(sum/N);  
  13. }  
#define N 12 
char value_buf[N];
char i=0;
char filter()
{
   char count;
   int  sum=0;
   value_buf[i++] = get_ad();
   if ( i == N )   i = 0;
   for ( count=0;count<N,count++)
      sum = value_buf[count];
   return (char)(sum/N);
}

5.中位值平均滤波法(防脉冲干扰平均滤波法)

方法解析:

相当于中位值滤波+算术平均滤波,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。

N值的选取:3-14

优点:融合了两种滤波法的优点

对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。

缺点:

测量速度较慢,和算法平均滤波一样,浪费RAM。


  1. #define N 12  
  2. char filter()  
  3. {  
  4.    char count,i,j;  
  5.    char value_buf[N];  
  6.    int  sum=0,temp=0;  
  7.    for  (count=0;count<N;count++)  
  8.    {  
  9.       value_buf[count] = get_ad();  
  10.       delay();  
  11.    }  
  12.    for (j=0;j<N-1;j++)  
  13.    {  
  14.       for (i=0;i<N-j;i++)  
  15.       {  
  16.          if ( value_buf[i]>value_buf[i+1] )  
  17.          {  
  18.             temp = value_buf[i];  
  19.             value_buf[i] = value_buf[i+1];   
  20.              value_buf[i+1] = temp;  
  21.          }  
  22.       }  
  23.    }  
  24.    for(count=1;count<N-1;count++)  
  25.       sum += value[count];  
  26.    return (char)(sum/(N-2));  
  27. }  
#define N 12
char filter()
{
   char count,i,j;
   char value_buf[N];
   int  sum=0,temp=0;
   for  (count=0;count<N;count++)
   {
      value_buf[count] = get_ad();
      delay();
   }
   for (j=0;j<N-1;j++)
   {
      for (i=0;i<N-j;i++)
      {
         if ( value_buf[i]>value_buf[i+1] )
         {
            temp = value_buf[i];
            value_buf[i] = value_buf[i+1]; 
             value_buf[i+1] = temp;
         }
      }
   }
   for(count=1;count<N-1;count++)
      sum += value[count];
   return (char)(sum/(N-2));
}

6一阶滞后滤波法

方法解析:

取a=0-1

本次滤波结果=(1-a)*本次采样值+a*上次滤波结果

优点:

对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合

缺点:

相位滞后,灵敏度低,滞后程度取决于a值的大小,不能消除滤波频率高于采样频率的1/2的干扰信号


  1. #define a 50  
  2. char value;  
  3. char filter()  
  4. {  
  5.    char  new_value;  
  6.    new_value = get_ad();  
  7.    return (100-a)*value + a*new_value;   
  8. }  
#define a 50
char value;
char filter()
{
   char  new_value;
   new_value = get_ad();
   return (100-a)*value + a*new_value; 
}

7.加权递推平均滤波法

方法解析:

是对递推平均滤波法的改进,即不同时刻的数据加以不同的权

通常是,越接近现时刻的数据,权取得越大,给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。

优点:

适用于有较大纯滞后时间常数的对象,和采样周期较短的系统

缺点:

 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,不能迅速反应系统当前所受干扰的严重程度,滤波效果差。


  1. #define N 12  
  2. char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};  
  3. char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;  
  4. char filter()  
  5. {  
  6.    char count;  
  7.    char value_buf[N];  
  8.    int  sum=0;  
  9.    for (count=0,count<N;count++)  
  10.    {  
  11.       value_buf[count] = get_ad();  
  12.       delay();  
  13.    }  
  14.    for (count=0,count<N;count++)  
  15.       sum += value_buf[count]*coe[count];  
  16.    return (char)(sum/sum_coe);  
  17. }  
#define N 12
char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
   char count;
   char value_buf[N];
   int  sum=0;
   for (count=0,count<N;count++)
   {
      value_buf[count] = get_ad();
      delay();
   }
   for (count=0,count<N;count++)
      sum += value_buf[count]*coe[count];
   return (char)(sum/sum_coe);
}


8.消抖滤波法

方法解析:

设置一个滤波计数器,将每次采样值与当前有效值比较:

如果采样值=当前有效值,则计数器清零,如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出),如果计数器溢出,则将本次值替换当前有效值,并清计数器

优点:

对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动

缺点:

对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统

  1. #define N 12  
  2. char filter()  
  3. {  
  4.    char count=0;  
  5.    char new_value;  
  6.    new_value = get_ad();  
  7.    while (value !=new_value);  
  8.    {  
  9.       count++;  
  10.       if (count>=N)   return new_value;  
  11.        delay();  
  12.       new_value = get_ad();  
  13.    }  
  14.    return value;      
  15. }  
#define N 12
char filter()
{
   char count=0;
   char new_value;
   new_value = get_ad();
   while (value !=new_value);
   {
      count++;
      if (count>=N)   return new_value;
       delay();
      new_value = get_ad();
   }
   return value;    
}

10.低通数字滤波

解析:

低通滤波也称一阶滞后滤波,方法是第N次采样后滤波结果输出值是(1-a)乘第N次采样值加a乘上次滤波结果输出值。可见a<<1。该方法适用于变化过程比较慢的参数的滤波的C程序函数如下:


  1. float low_filter(float low_buf[])  
  2. {  
  3.     float sample_value;  
  4.     float X=0.01;  
  5.     sample_value=(1_X)*low_buf[1]+X*low buf[0];  
  6.     retrun(sample_value);  
  7. }  
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页