常用的数学公式

本文介绍了数学中常用的泰勒展开式,包括指数函数、对数函数、几何级数等;级数求和公式如辛钦公式和斯特林公式;常见的积分公式如高斯积分;以及概率论中的大数定律和中心极限定理,如切比雪夫不等式、列维-林德伯格定理。
摘要由CSDN通过智能技术生成

1、常用的泰勒展开式

1.1、指数函数和对数函数

e x = ∑ n = 0 ∞ x n n ! ∀ x e ^ { x } = \sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { n ! } \forall x ex=n=0n!xnx

ln ⁡ ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n + 1 n x n ∀ x : ∣ x ∣ < 1 \ln ( 1 + x ) = \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } } { n } x ^ { n } \quad \forall x : | x | < 1 ln(1+x)=n=1n(1)n+1xnx:x<1

1.2、几何级数

1 1 − x = ∑ n = 0 ∞ x n ∀ x : ∣ x ∣ < 1 \frac { 1 } { 1 - x } = \sum _ { n = 0 } ^ { \infty } x ^ { n } \quad \forall x : | x | < 1 1x1=n=0xnx:x<1

1.3、二项式定理

( 1 + x ) α = ∑ n = 0 ∞ C ( α , n ) x n ∀ x : ∣ x ∣ < 1 , ∀ α ∈ C ( 1 + x ) ^ { \alpha } = \sum _ { n = 0 } ^ { \infty } C ( \alpha , n ) x ^ { n } \quad \forall x : | x | < 1 , \forall \alpha \in \mathbb { C } (1+x)α=n=0C(α,n)xnx:x<1,αC

1.4、三角函数

sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 ∀ x \sin x = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { ( 2 n + 1 ) ! } x ^ { 2 n + 1 } \quad \forall x sinx=n=0(2n+1)!(1)nx2n+1x

cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n ∀ x \cos x = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { ( 2 n ) ! } x ^ { 2 n } \quad \forall x cosx=n=0(2n)!(1)nx2nx

tan ⁡ x = ∑ n = 1 ∞ B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 ∀ x : ∣ x ∣ < π 2 \tan x = \sum _ { n = 1 } ^ { \infty } \frac {B_{2n} ( - 4 ) ^ { n } ( 1- 4^ { n } ) } { ( 2 n ) ! } x ^ { 2 n-1 } \quad \forall x: | x | < \frac {\pi}{2} tanx=n=1(2n)!B2n(4)n(14n)x2n1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值