1、常用的泰勒展开式
1.1、指数函数和对数函数
e x = ∑ n = 0 ∞ x n n ! ∀ x e ^ { x } = \sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { n ! } \forall x ex=n=0∑∞n!xn∀x
ln ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n + 1 n x n ∀ x : ∣ x ∣ < 1 \ln ( 1 + x ) = \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } } { n } x ^ { n } \quad \forall x : | x | < 1 ln(1+x)=n=1∑∞n(−1)n+1xn∀x:∣x∣<1
1.2、几何级数
1 1 − x = ∑ n = 0 ∞ x n ∀ x : ∣ x ∣ < 1 \frac { 1 } { 1 - x } = \sum _ { n = 0 } ^ { \infty } x ^ { n } \quad \forall x : | x | < 1 1−x1=n=0∑∞xn∀x:∣x∣<1
1.3、二项式定理
( 1 + x ) α = ∑ n = 0 ∞ C ( α , n ) x n ∀ x : ∣ x ∣ < 1 , ∀ α ∈ C ( 1 + x ) ^ { \alpha } = \sum _ { n = 0 } ^ { \infty } C ( \alpha , n ) x ^ { n } \quad \forall x : | x | < 1 , \forall \alpha \in \mathbb { C } (1+x)α=n=0∑∞C(α,n)xn∀x:∣x∣<1,∀α∈C
1.4、三角函数
sin x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 ∀ x \sin x = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { ( 2 n + 1 ) ! } x ^ { 2 n + 1 } \quad \forall x sinx=n=0∑∞(2n+1)!(−1)nx2n+1∀x
cos x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n ∀ x \cos x = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { ( 2 n ) ! } x ^ { 2 n } \quad \forall x cosx=n=0∑∞(2n)!(−1)nx2n∀x
tan x = ∑ n = 1 ∞ B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 ∀ x : ∣ x ∣ < π 2 \tan x = \sum _ { n = 1 } ^ { \infty } \frac {B_{2n} ( - 4 ) ^ { n } ( 1- 4^ { n } ) } { ( 2 n ) ! } x ^ { 2 n-1 } \quad \forall x: | x | < \frac {\pi}{2} tanx=n=1∑∞(2n)!B2n(−4)n(1−4n)x2n−1