17、格基规约算法:LLL 及其变体的深入解析

格基规约算法:LLL 及其变体的深入解析

1. 浮点数运算与格基规约基础

在浮点数运算中,对于近似运算 (f l(N_a \circ N_b)),其误差幅度受 (2^{-t}) 限制,即 (\frac{|f l(N_a \circ N_b) - N_a \circ N_b|}{|N_a \circ N_b|} \leq 2^{-t})。若 (|N_a \circ N_b| > 2^{2s}) 或 (|N_a \circ N_b| < 2^{-2s}),则 (f l(N_a \circ N_b)) 会因溢出或下溢而无定义。通常要求 (2s \leq t^2),即 (s \leq 2 \log_2 t),为简便起见,我们将浮点数的位长等同于 (t),忽略次要的 ((s + 2)) 部分。在浮点数运算下的 Householder 正交化(HO)中,我们使用近似向量 (\hat{h}_l),(\hat{r}_l \in FL^m_t) 以及精确基向量 (b_l \in \mathbb{Z}^m)。

2. 标准格基规约
  • 大小规约(Size - Reduction) :对于格基 (B = QR \in \mathbb{R}^{m \times n}),若对于所有 (j > i) 满足 (\frac{|r_{i,j}|}{r_{i,i}} \leq \frac{1}{2} + \epsilon),则称该格基是大小规约的(有时忽略 (\epsilon))。
  • LLL 规约(LLL - Reduction) :对于 (\delta \in (\gamma^2, 1]
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良因,淘汰劣等因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值