推荐系统的多标准评分
1. 引言
推荐系统(RS)作为消费者决策支持工具,旨在帮助用户找到最符合其偏好和需求的项目。传统的推荐系统通常使用单维评分(如一个标量值)来表示用户对项目的评价,而多标准评分则允许用户对项目的不同方面或维度进行分别评价,从而表达更细致的意见。这种方法不仅能够更准确地反映用户的偏好,还能提升推荐系统的个性化程度和用户体验。
2. 相关工作
多项研究表明,多标准评分能够显著提高推荐的准确性。例如,Adomavicius等人提出了一种早期且全面的文章,该文章提出了对评分的情境化视角。尽管用户的评分仍然是单维度的,但加入了用户的情境参数(如年龄、性别、时间等),使得推荐更加精准。具体而言,评分被标记了情境参数,如用户的年龄、性别或工作日,如果系统更倾向于只利用那些在二十几岁时、男性用户在周一评价的评分,那么对于一个二十几岁的男性用户在周一的推荐可能更准确。
Adomavicius & Kwon提出了一种可以利用真实多标准评分的推荐方法,即用户为同一物品的不同方面提供评分值。为了确定特定用户对某一物品的总体评分,他们的算法执行了三个步骤:
- 计算每个标准的评分值 :类似于传统推荐系统,为每个标准计算一个评分值。
- 估计聚合函数 :允许从多个标准评分中计算出总体评分。
- 计算总体评分值 :根据估计的总体评分值对可推荐的物品进行排名。
3. 多标准评分的应用
以旅游平台TripAdvisor为例