KMP算法总结

大多的浏览器都有在网页中需找关键字的功能。

这个功能的实现涉及到字符串的匹配算法。

在大学中数据结构考试的时候大家对KMP算法一定是深恶痛绝。不过事物往往是有其两面性的。

如今KMP就成为了我的救世主。

 

首先对比下普通字符串匹配BF算法与KMP算法的效率。

 

设:原始串是S,模式串是T

时间复杂度: BF算法是O(strlen(S) * strlen(T))

             KMP算法是O(strlen(S) + strlen(T))

空间复杂度: BF算法是O(1)

             KMP算法是O(strlen(T))

 

现在明显的看出KMP在时间上的优越性了吧。对于KMPBF稍差的空间复杂度,相信大多的硬件设备是可以提供足够的空间的。

 

对比下普通字符串匹配BF算法与KMP算法的匹配方式

BF算法中,如果当前字符匹配成功,即s[i+j] == T[j],令j++,继续匹配下一个字符;如果失配,即S[i + j] != T[j],需要让i++,并且j= 0,即每次匹配失败的情况下,模式串T相对于原始串S向右移动了一位。

 

KMP算法中,如果当前字符匹配成功,即S[i]==T[j],令i++j++,继续匹配下一个字符;如果匹配失败,即S[i] != T[j],需要保持i不变,并且让next[j],这里next[j] <=j -1,即模式串T相对于原始串S向右移动了至少1(移动的实际位数next[j]  >=1)同时移动之后,i之前的部分(即S[i-j+1 ~ i-1]),和j=next[j]之前的部分(即T[0 j-2])仍然相等。(这里j-1就是T[j]KMP中所谓的特征向量值)显然,相对于BF算法来说,KMP移动更多的位数,起到了一个加速的作用 (失配的特殊情形,令j=next[j]导致j==0的时候,需要将++,否则此时没有移动模式串)

 

要是按照普通字符串匹配BF算法,字符串的匹配是按照S串逐个进行匹配的,每次的回溯都是strlen(T)-1,这注定了时间效率的低下。

能不能不进行回溯,直接跳到S串不匹配的字符处?显然是不行的。

如模式串中包含重复出现的字符,比如ababc。当和abababc进行匹配时:

abababc

ababc

匹配到c时如果不进行回溯的话:

abababc

    ababc

将找不到匹配的字符

 

但是也有特殊的情形如abcdeababcde进行匹配,在模式串中没有重复出现的字符。那么可以不进行回溯。

ababcde

abcde

ababcde

  abcde

 

显然可以看出回溯的原因是因为模式串中有重复出现的字符,如果不回溯可能会跳过匹配的字符串。用比较专业的说法是模式串中所有字符串的“前缀”和“后缀”的相等部分的长度不为0。模式串长度为n,则存在n个字符串的“前缀”和“后缀”。

什么叫做“前缀”和“后缀”,非专业人士的认识如下:

例如:

 

设模式串T0,T1,T2,T3,T4ababc

ababcaba字符串的前缀和后缀相同的部分为T0T2,长度为1.

ababcabab字符串的前缀和后缀相同的部分为T0T1T2T3,长度为2.

 

如果模式串T0,T1,T2,T3,T4abcde

abcde中所有字符串的前缀和后缀相同的部分长度为0.如:aababcabcdabcde

注意:只要模式串中的某个字符串的前缀和后缀有相同的部分,则这个模式字符串匹配时将需要进行回溯。

 

KMP 算法思想
    
普通的字符串匹配算法必须要回溯。但回溯就影响了效率,回溯是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。像上面所说如果T串为abcde这样的,大没有回溯的必要。

    改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。

    如果不用回溯,那模式串下一个位置从哪里开始呢?

    还是上面那个例子,T(模式串)ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样:

...ababd...

   ababc

    ->ababc

这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。这个当T[j]失配后,应该往前跳的值就是jnext值,它是由T串本身固有决定的,与S(主串)无关

next数组的含义

重点来了。下面解释一下next数组的含义,这个也是KMP算法中比较不好理解的一点。

  令原始串为S[i],其中0<=i<=n;模式串为T[j],其中0<=j<=m

  假设目前匹配到如下位置

               S0,S1,S2,...,Si-j,Si-j+1...............,Si-1Si, Si+1,....,Sn

                                   T0,T1,...................,Tj-1Tj, ..........

  ST的绿色部分匹配成功,恰好到SiTj的时候失配,如果要保持i不变,同时达到让模式串T相对于原始串S右移的话,可以更新j的值,让Si和新的Tj进行匹配,假设新的jnext[j]表示,即让Sinext[j]匹配,显然新的j值要小于之前的j值,模式串才会是右移的效果,也就是说应该有next[j] <= -1。那新的j值也就是next[j]应该是多少呢?我们观察如下的匹配:

   1)如果模式串右移1位(从简单的思考起,移动一位会怎么样),即next[j] 1 即让蓝色的SiTj-1匹配 (注:省略号为未匹配部分)

               S0,S1,S2,...,Si-j,Si-j+1...............,Si-1Si, Si+1,....,Sn

                                   T0,T1,...................,Tj-1Tj, .......... (T的划线部分和S划线部分相等【1)

                                        T0,T1,................Tj-2,Tj-1, ....... (移动后的T的划线部分和S的划线部分相等【2)

   根据【1】【2】可以知道当next[j] =j -1,即模式串右移一位的时候,有T[0 j-2] == T[1 j-1]。而这两部分恰好是字符串T[0 ~j-1]的前缀和后缀,也就是说next[j]的值取决于模式串Tj前面部分的前缀和后缀相等部分的长度(好好揣摩这两个关键字概念:前缀、后缀,或者再想想,我的上一篇文章,从Trie树谈到后缀树中,后缀树的概念)。

   2)如果模式串右移2位,即next[j] 2 即让蓝色的SiTj-2匹配     

               S0,S1,...,Si-j,Si-j+1,Si-j+2...............,Si-1Si, Si+1,....,Sn

                                   T0,T1,T2,...................,Tj-1Tj, ..........(T的划线部分和S划线部分相等【3)

                                              T0,T1,.............,Tj-3,Tj-2,.........(移动后的T的划线部分和S的划线部分相等【4)

    同样根据【3】【4】可以知道当next[j] =j -2,即模式串右移两位的时候,有T[0 j-3] == T[2 j-1]。而这两部分也恰好是字符串T[0 ~j-1]的前缀和后缀,也就是说next[j]的值取决于模式串Tj前面部分的前缀和后缀相等部分的长度。

    3)依次类推,可以得到如下结论:当发生失配的情况下,j的新值next[j]取决于模式串中T[0 j-1]中前缀和后缀相等部分的长度, 并且next[j]恰好等于这个最大长度

    为此,请再允许我引用上文中的一段原文:KMP算法中,如果当前字符匹配成功,即S[i]==T[j],令i++j++,继续匹配下一个字符;如果匹配失败,即S[i] != T[j],需要保持i不变,并且让next[j],这里next[j] <=j -1,即模式串T相对于原始串S向右移动了至少1(移动的实际位数next[j]  >=1),

    同时移动之后,i之前的部分(即S[i-j+1 ~ i-1]),和j=next[j]之前的部分(即T[0 j-2])仍然相等。显然,相对于BF算法来说,KMP移动更多的位数,起到了一个加速的作用 (失配的特殊情形,令j=next[j]导致j==0的时候,需要将++,否则此时没有移动模式串)。”

next数组求法

可以证明对于任意的模式串T=T0T1…Tm-1,确实存在一个由模式串本身唯一确定的与目标串无关的数组next,计算方法为:
   (1)
 令next[0] = -1,令next[1] = 0;对于i > 1next[i] ,假定已知前一位置的特征数 next[i-1]k; 
   (2)
 当k≠-1Ti-1 = Tk ,则next[i] =k + 1 ;

(3) k≠-1Ti-1 ≠ Tk,则令 k = next [k];
   (4)
 当k==-1 next[i] = 0

(非优化的)

简单举例说明下计算方法:

还是上面的例子设模式串T0,T1,T2,T3,T4ababc

i=0next[0]=-1

i=1next[1]=0;

i=2(1)next[1]=0, => k=0  (3) T1=b≠ T0=a  k=next[0]=-1 (4) next[2]=0;

 i=3(1)next[2]=0, =>k=0  (2)T2=a, T0=a  T2=T0 next[3]=k+1=1;

 i=4(1)next[3]=1,=>k=1   (2)T3=b,T1=b  T3=T0  next[4]=k+1=2;

 

void get_next(string s,int next[])
{    
    int length=s.length();
    int i=0,j=-1;
    next[0]=-1;
    while(i<length)
    {
        if(j==-1||s[i]==s[j])  
        {
            ++i;
            ++j;   
            next[i]=j;
        }
        else
            j=next[j];  
     }
}

//代码5-1    
//int kmp_seach(char const*, int, char const*, int, int const*, int pos)  KMP模式匹配函数    
//输入:src, slen主串    
//输入:patn, plen模式串    
//输入:nextval KMP算法中的next函数值数组    
int kmp_search(char const* src, int slen, char const* patn, int plen, int const* nextval, int pos)    
{    
    int i = pos;    
    int j = 0;    
    while ( i < slen && j < plen )    
    {    
        if( j == -1 || src[i] == patn[j] )    
        {    
            ++i;    
            ++j;    
        }    
        else    
        {    
            j = nextval[j];              
            //当匹配失败的时候直接用p[j_next]与s[i]比较,    
            //下面阐述怎么求这个值,即匹配失效后下一次匹配的位置    
        }    
    }    
    if( j >= plen )    
        return i-plen;    
    else    
        return -1;    
}    

 

参考:

http://blog.csdn.net/liuben/article/details/4409505

 

http://blog.csdn.net/v_july_v/article/details/7041827

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值