吴恩达机器学习笔记之神经网络参数的反向传播算法

本文详细介绍了神经网络的代价函数,特别是反向传播算法的计算过程,包括如何从最后一层开始计算误差,逐步向前传播,以及参数的向量化表示。通过MATLAB代码展示了算法的实现,并解释了为何需要对权重进行随机初始化以避免对称权重问题。最后强调了在训练神经网络时的步骤,包括代价函数的计算、反向传播求导数和梯度检验的重要性。
摘要由CSDN通过智能技术生成

代价函数:

回顾Logistic Regression中的代价函数为:

神经网络的代价函数的基本思想与逻辑回归是一样的,但是形式上有一些差别:

L表示神经网络的层数,sl表示l层神经网中的神经元的个数,K表示输出层的神经元的个数;正则项的计算包含了每一个激活单元。

反向传播算法:

为了计算代价函数的偏导数,我们需要采用一种反向传播算法,它的目的是为了最小化我们的代价函数,即先计算最后一层的误差,然后在向前一层一层的计算,假如我们的神经网络有四层,并且输出单元有四个,那么最后一层的误差为: 

第三层的误差为:,其中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值