代价函数:
回顾Logistic Regression中的代价函数为:
神经网络的代价函数的基本思想与逻辑回归是一样的,但是形式上有一些差别:
L表示神经网络的层数,sl表示l层神经网中的神经元的个数,K表示输出层的神经元的个数;正则项的计算包含了每一个激活单元。
反向传播算法:
为了计算代价函数的偏导数,我们需要采用一种反向传播算法,它的目的是为了最小化我们的代价函数,即先计算最后一层的误差,然后在向前一层一层的计算,假如我们的神经网络有四层,并且输出单元有四个,那么最后一层的误差为:
第三层的误差为:,其中,