克鲁斯卡尔算法
畅通工程
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100
Sample Output
3
?
#include<iostream>
#include<algorithm>
using namespace std;
struct edge{
int a,b,len;
}e[10005];
int fa[10005];
bool cmp(edge x,edge y)
{
return x.len<y.len;
}
int find_fa(int x)
{
if(fa[x]==x)
return x;
return fa[x]=find_fa(fa[x]);
}
int main()
{
int n,m;
while(cin>>n>>m){
if(n==0) break;
for(int i=1;i<=n;i++){
cin>>e[i].a>>e[i].b>>e[i].len;
}
sort(e+1,e+n+1,cmp);
for(int i=1;i<=m;i++)
fa[i]=i;
int ans=0,flag=0;
for(int i=1;i<=n;i++){
int f1=find_fa(e[i].a);
int f2=find_fa(e[i].b);
if(f1!=f2){
fa[f1]=f2;
ans+=e[i].len;
}
}
for(int i=1;i<=m;i++)
if(fa[i]==i)
flag++;
if(flag>1) cout<<"?"<<endl;
else cout<<ans<<endl;
}
return 0;
}