- 博客(353)
- 收藏
- 关注
原创 AI能认识你吗?RAG/微调/提示工程三大核心技术详解,程序员必学,建议收藏
文章探讨了AI对用户的认识程度,介绍了三种提升AI回答准确性的方法:RAG(检索增强生成)、Fine-tuning(微调)和Prompt Engineering(提示工程)。RAG通过检索实时信息增强回答,Fine-tuning让模型深度学习特定领域知识,Prompt Engineering则是优化提问方式。文章分析了三种方法的原理、优缺点及适用场景,建议根据需求选择合适方法或组合使用,以更好地驾驭AI工具。
2025-12-23 15:35:58
425
原创 RAG知识库构建核心:告别一刀切!文档处理实战指南,程序员必看收藏
本文强调RAG系统中文档处理的重要性,指出没有放之四海而皆准的标准方法。知识库构建的核心是优化检索能力而非简单拆分文档。针对结构化数据应提取元数据,非结构化数据需合理分段并保留核心内容。文档清洗至关重要,需过滤无效内容和脏数据。最终处理方式应根据具体业务需求灵活调整,而非机械照搬流程,才能提升知识库质量和系统表现。
2025-12-23 15:35:14
374
原创 智能体(Agent)开发指南:从基础概念到主流框架实现
文章全面介绍了智能体(Agent)的核心概念、架构设计与实现方法,以及主流框架对比。内容包括智能体基础理论(PEAS模型、智能体循环、提示工程)、与传统工作流的区别、模型参数调优方法、核心架构(ReAct、Plan-and-Solve、Reflection)和主流框架(AutoGen、AgentScope等)分析,以及低代码开发平台和本地推理工具介绍。旨在帮助开发者构建高性能智能体系统。
2025-12-20 16:05:56
563
原创 揭秘AI Agent的自我反馈机制:让代码像人类一样不断优化
本文介绍了AI Agent的自我反馈机制,通过双智能体架构(生成智能体与验证智能体)实现代码的持续优化。反射协调器控制反思循环,设置质量阈值、迭代限制等条件确保高效退出。案例展示了一款质数过滤函数如何从初版65分优化至92分,体现了AI从"执行工具"到"学习实体"的进化。这一机制使AI具备元认知能力,在不依赖人类反馈的情况下自主改进,标志着AI能力的重要跃迁。
2025-12-20 16:05:06
637
原创 大模型全栈学习指南:理论到实战,一步到位
文章推荐了DataWhale开源的从NLP到大语言模型的全栈教程,分为理论、实战、微调量化和应用部署四部分。教程从NLP基础开始,逐步深入到Transformer架构和预训练模型,通过文本分类和命名实体识别等实战项目巩固知识,最后讲解微调技术和模型部署方法。该教程全面系统,适合新手快速构建大模型知识框架,为进入50W+薪资的大模型算法岗位做准备。
2025-12-19 19:01:01
303
原创 掌握提示工程:CoT思维链技术详解,零样本学习替代数据标注
提示工程是设计与大模型交互的核心技能,特别是Chain-of-Thought(CoT)技术通过引导模型展示推理过程,能显著降低对标注数据的依赖。无需微调,即可通过零样本/少样本提示让基座模型表现出接近微调模型的性能。文章系统介绍了提示工程流程:任务分析、提示设计模式选择、迭代评估和工具集成,以及角色扮演、格式约束等高级技巧,帮助开发者将人类思维模式"翻译"成模型可执行的指令,实现经济高效、透明可解释的大模型应用。
2025-12-18 18:27:46
823
原创 2025年底,我们用什么框架来开发智能体?
如果说 2024 年是“大模型应用”的元年,那么 2025 年无疑是 **“智能体(Agents)”** 的爆发之年。AI 正在从对话助手演变为能自主执行任务的智能体。从年初的 Prompt Engineering,到年中的 RAG,再到现在,Agent 已成为每个开发者的必修课。但问题也随之而来:**框架太多了。**
2025-12-16 18:38:16
677
原创 RAG分块完全指南:提升大模型检索准确率的5大策略详解
RAG技术通过分块策略解决大模型在企业应用中的局限性。文章详细分析了五种分块策略:固定大小分块实现简单但易语义断裂;语义分块保证内容完整但计算复杂;递归分块适应长文档但块大小不均;基于文档结构的分块保留逻辑但依赖格式;基于LLM的分块智能化但成本高。针对不同场景,如金融、医疗等高风险领域,应选择合适的分块策略或组合使用,以提高检索准确性、降低幻觉风险,并解决复杂文档解析瓶颈问题。
2025-12-12 18:14:59
906
原创 从零开始构建Agent记忆系统:LangGraph长短期记忆实战指南
本文深入探讨Agent Memory的核心概念,详解LangGraph框架下短期会话与长期记忆的实现机制,包括存储管理、语义检索等技术。通过MCP协议实战案例,手把手构建融合长记忆机制的Multi-Agent系统,展示中断处理、记忆协作等高级功能。文章提供完整代码示例,帮助开发者掌握记忆管理策略,打造具有上下文感知能力的智能体系统。
2025-12-11 17:59:32
686
原创 大模型微调技术:从全科医生到专科专家的完整指南
本文详细介绍了大模型微调(Fine-tuning)的概念、原理及三种主要方法:全参数微调(性能最佳但成本高)、部分参数微调(折中方案)和参数高效微调(PEFT,当前主流选择)。PEFT技术包括Additive(添加新参数)、Selective(选择性训练参数)和Reparametrization-based(如LoRA)三大范式,让小型团队也能高效定制大模型。未来趋势是进一步降低参数量、增强框架灵活性、拓展多模态应用,并优化边缘部署能力。
2025-12-11 17:58:20
587
原创 深入理解LLM大语言模型,从入门到精通(建议收藏)
本文从基础定义、技术原理(预训练、后训练、强化学习)到实用技巧全面解析大语言模型(LLM)。预训练阶段通过互联网数据训练基础模型;后训练将模型转变为对话助手;强化学习优化输出质量。文章探讨幻觉问题、思维链等关键概念,并提供use code等实用技巧,帮助读者理解LLM工作原理和应用方法。
2025-12-10 17:30:09
251
原创 大模型入门核心:Token原理、计算与费用详解
Token是大模型处理语言的最小单位,它将人类语言转化为数字向量供模型处理,再转化回文字。Token数量直接影响模型的输入限制和API费用,中文1-2个字符约等于1个Token,英文4个字母或0.75个单词约等于1个Token。理解Token原理是掌握大模型应用的基础。
2025-12-10 17:29:21
842
原创 从零构建AI智能体:CoT、ReAct核心技术到OpenManus实战开发
本文全面介绍AI智能体的概念、分类及实现技术,重点讲解CoT思维链、Agent Loop和ReAct模式等核心技术。通过分析OpenManus开源框架,详细阐述自主规划智能体的架构设计与实现原理,并基于Spring AI框架指导读者自主开发Manus智能体。最后探讨智能体工作流、OWL框架和A2A协议等前沿技术,为构建具有自主决策能力的AI系统提供完整解决方案。
2025-12-09 10:08:40
939
原创 大模型微调vs从零训练:看这一篇就够了,小白也能秒懂
文章详细对比了大模型微调与从零训练的区别。微调是在预训练模型基础上使用特定数据进行二次训练,而从零训练则完全从随机参数开始。两者在代码实现上存在显著差异:微调需要加载预训练权重并可能冻结部分参数,使用分层学习率和分阶段训练策略;从零训练则初始化所有参数,使用统一学习率和常规训练策略。文章还总结了两种方法的适用场景:当数据量大或任务特殊时选择从零训练;数据有限或任务相似时选择微调。
2025-12-09 10:05:53
485
原创 构建高可用RAG系统:混合检索与重排序策略详解
文章讨论了RAG应用中单一检索策略的局限性,特别是专有名词匹配失败和语义漂移问题。提出采用混合检索(结合向量检索和关键词检索)并通过RRF算法融合结果,以提高召回率。随后引入Cross-Encoder重排序技术对候选文档进行精细筛选,提升检索精度。这种"漏斗筛选"架构在保证计算效率的同时,显著提升了RAG系统的检索准确性和适用性,特别适合法律、医疗、金融等对精确性要求高的领域。
2025-12-03 19:24:03
929
原创 从零开始微调Rerank模型:让你的RAG系统检索精度提升10-30%
本文详细介绍了如何使用LlamaIndex微调Cross-Encoder类型的Rerank模型,显著提升RAG系统检索精度。通过微调,可在不改变Embedding模型的情况下,将检索准确率提升10-30%,是优化RAG系统的高性价比方法。文章涵盖Rerank模型基础概念、数据准备、微调流程、评估方法及最佳实践,提供完整代码示例,特别适用于垂直领域RAG系统的性能优化。
2025-12-03 19:23:15
759
原创 保姆级教程:LangChain框架详解 - 零基础也能学会的大模型应用开发
本文介绍了LangChain框架在大模型应用开发中的应用。LangChain是由哈佛大学发起的开源框架,可用于开发智能体、问答系统等。文章比较了多种LLM开发框架,并详细阐述了基于RAG和Agent两种架构的开发方法。同时介绍了大模型应用开发的四大场景:纯Prompt、Agent+Function Calling、RAG和Fine-tuning,并提供了选择建议。最后讲解了LangChain的核心组件,帮助开发者快速上手大模型应用开发。
2025-11-29 10:32:43
845
原创 程序员必学:大模型RAG系统优化的四大策略与代码实现
本文详细介绍了优化检索增强生成(RAG)系统的四种关键策略:优化分块方法、选择嵌入模型、调整向量搜索方法和构造提示。通过LangChain实现RAG流程,结合RAGAS评估框架进行A/B测试,文章展示了如何迭代改进RAG系统性能,强调理解数据并持续测试调整的重要性,实现更精准的大模型生成效果。
2025-11-28 14:16:30
613
原创 程序员必看:AI Agent破解大模型落地最后一公里难题
文章探讨企业如何通过AI Agent解决大模型落地"最后一公里"困境。AI Agent作为业务适配的智能执行体,通过场景化组织、执行体定位和复用型平台,将大模型能力转化为实际业务价值。文章介绍"智擎"平台作为企业构建AI Agent的底座框架,分享多个应用案例,提出四阶段行动建议,强调业务、技术、组织三者深度融合的重要性。
2025-11-28 14:14:31
1049
原创 RAG已死还是进化?大模型检索技术全面解析
本文探讨RAG技术的未来走向。LlamaIndex认为RAG正进化为智能体检索;Hamel等人主张RAG已成为严肃工程学科;Bustamante则认为Agent和长上下文将取代RAG核心地位。综合观点显示,初级RAG确实过时,但其为LLM提供精准外部知识的核心思想永恒。未来RAG将作为Agent工具箱中的组件,或被长上下文+Agent范式取代,开发者需根据场景灵活选择技术架构。
2025-11-27 13:39:17
1022
原创 收藏必备:大模型微调全攻略:从入门到精通
本文详细介绍了大模型微调的本质与原理,阐述了微调的四大核心原因:从通用到专用、少量标注提效、对齐与行为调优、提高鲁棒性。文章系统讲解了微调的关键超参数设置、参数高效微调技术(如LoRA、Adapters等),以及完整的微调流程和RLHF方法。通过合理的数据准备、模型选择和超参数调整,可有效提升模型在特定任务上的性能,同时保持训练效率和模型鲁棒性。
2025-11-27 13:37:27
794
原创 构建AI Agent前必看的5个关键问题
文章指出构建AI Agent前管理层需思考五个核心问题:一是明确解决具体动作而非模糊愿景;二是定义可量化的成功标准;三是确保数据质量、安全权限与审计回滚能力;四是明确上线后的责任人与管理机制;五是选择合适的实施节奏。作者强调,只有对这五个问题有清晰统一的答案,才能避免Agent项目高开低走,提高成功率。
2025-11-26 13:37:28
338
原创 企业级RAG系统实战:55万字技术博客精华,解决2万+文档检索难题
文章分享了在监管行业构建企业级RAG系统的实战经验,强调文档质量检测、层级化分块、混合检索和置信度驱动路由等工程要点的重要性。作者指出企业RAG更多是工程而非机器学习,元数据架构比embedding模型更重要,并推荐使用开源模型如Qwen以满足成本和数据主权需求。文章提供了四个核心工程要点的代码示例和评论区精华问答。
2025-11-26 13:36:06
933
原创 大模型Agent实战指南:少即是多,做减法才能高效落地
这篇文章探讨了Agent业务落地的核心策略——做减法。作者强调不应盲目追求更大的上下文、更全的工具和更复杂的流程,而应聚焦于"必要且充分"的信息、工具与步骤。文章从上下文工程视角分析了常见失效模式,提出了信息、工具和流程三个层面的减法原则,以及RAG精准检索、工具装载等六个可落地的减法动作。通过文件系统卸载、上下文修剪等技术,可以实现更稳、更快、更省的Agent,更容易在真实业务中留存与复用。
2025-11-25 15:05:53
429
原创 从浅层循环到深度智能:大模型Agents 2.0架构升级实战指南
本文介绍大模型Agent从"浅层循环"到"深度智能"的范式迁移。深度Agent 2.0以"规划、委派、持久记忆、人类在环"为四大支柱,支持长周期复杂任务。LangChain的DeepAgents基于LangGraph提供有状态编排、检查点、HITL中断、子代理与文件系统等能力,适用于研究、编码协作等场景,但需权衡成本与复杂性。
2025-11-25 15:04:35
824
原创 AI 智能体(Agent) 定义、分类、技术架构和应用路径一文详解
智能体(Agent)是一种能够感知环境、制定决策并采取行动以实现特定目标的AI系统,一般具有记忆、规划、采取行为、使用工具等基本能力,如下图所示,其中规划中有思维链、能进行反思、目标分解。与传统AI系统不同,智能体具有自主性、持续性和适应性,能够在复杂环境中持续学习和优化自身行为。
2025-06-16 14:20:58
2607
原创 与大语言模型交互的礼貌语气:技术影响、社会行为与文化意义的多维度探讨
关于是否值得对 AI 保持礼貌的公众意见,几乎和咖啡或红酒的最新研究结果一样频繁变化——这个月被推崇备至,下个月又受到质疑。延续到现实生活中,而是因为他们相信礼貌能够带来更好、更高效的结果。这种假设在用户和研究人员之间都有所流传,提示语的措辞在研究领域被当作一种工具,用于对齐安全和语气控制,而用户习惯也在不断强化和重塑这些期望。前排提示,文末有大模型AGI-CSDN独家资料包哦!例如,2024 年日本的一项研究发现,提示语的礼貌程度可以改变大型语言模型的行为。
2025-05-10 09:32:41
995
原创 全面了解 LLM 微调——如何根据应用场景独特需求定制大型语言模型
截至2023年,大型语言模型(LLM)的发展确实在不断进步,涌现出了多种新的模型,如ChatGLM、Alpaca、Falcon以及Llama 2,还有GPT-4等。这些模型在自然语言处理领域展现出了强大的潜力,它们能够执行各种复杂的语言任务,如文本生成、翻译、摘要、问答等。微调(Fine-tuning)是利用这些大型语言模型潜力的一个重要方面。微调是指在预训练模型的基础上,针对特定的任务或数据集进行进一步的训练,以提高模型在该任务上的表现。
2025-05-10 09:30:33
1059
原创 大模型微调揭秘:微调在实际应用中的具体过程和效果
是指经过大量数据训练的神经网络模型。这些模型通常具有非常复杂的结构和大量的参数,可以处理广泛的任务,理解和生成自然语言,常见的大模型有文心、GPT4、LLAMA等。
2025-05-10 09:29:17
842
原创 一文带你了解企业级ai agent应用的6种基础类型
数据分析与商业智能(BI)在中大型企业的日常运营中的重要性毋庸置疑,无论是简单的财务数据分析,还是复杂的客户与运营数据洞察,都需要借助专业的工具。理想中的AI Agent是在丢给他一个工具包与一些知识以后,借助于大模型的理解、推理能力,完全自主的规划与分解任务,设计任务步骤,并智能的使用各种工具,检索知识,输出内容,完成任务。在实际测试中我们发现不同的大模型在这方面的能力是有较大的差异的,而且即使是最优秀的模型,也存在一定的不确定性,比如有时候无法判断出正确的工具。
2025-05-10 09:27:13
944
原创 一文详解企业想运用大模型现阶段的挑战、场景选择和落地方法
但是,我们也看到,大模型在即将过去的一年仍然快速演进,展现出更加强大的文本理解及生成能力,以及复杂任务的推理能力。同时,大模型还缺乏特定领域的知识,包括企业所在行业的专业知识,以及企业内部人才听得懂的“行话”等等。,结合行业领域知识库,解决其中某个特定问题,显著提升专业人士的工作效率,将是一个业务强相关的好场景。实际上,前文所述的“AI助手”,目前要实现端到端的能力,技术成熟度还不够高,大概率会让专业人士失望。企业在应用大模型时,应选择合适的场景,平衡投入与回报,并制定全面的应对策略以实现真正的价值落地。
2025-05-10 09:22:11
1143
原创 企业级大模型应用中面临的问题+解答
然后由于初创企业,资金和人力都有限,无法直接配备完善的企业架构,比如说项目经理,产品经理,技术负责人,再加上其它的行政,财务等等。在前面的[千万不要为了节约成本而选择小模型,特别是开源模型]这篇文章中,简单说明了为什么尽量不要选择小模型,然后文章下面有些评论,可能觉得作者说的都是废话,或者模型不好直接换就行了。
2025-05-10 09:08:52
632
原创 什么是AI智能体?如何实现智能体?
AI 智能体(Agent)是一种自主运行的人工智能系统,能够感知环境、做出决策并执行特定任务。它通常以任务驱动为核心,结合人工智能技术,实现高效的交互和智能化的服务。
2025-05-09 10:26:00
1008
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅