第一章 初识机器学习

本文介绍了机器学习的基本概念,定义为计算机程序通过经验E提升解决任务T的性能P。机器学习分为监督学习和非监督学习。监督学习包含分类(如房屋价格预测)和回归(如肿瘤恶性判断)问题;非监督学习则在无标签数据中寻找特征的内在联系,如聚类分析。
摘要由CSDN通过智能技术生成

目录

1 机器学习的定义

2 机器学习的分类

1  监督学习

分类问题

回归问题

2 非监督学习


1 机器学习的定义

      课程中关于机器学习的表述:计算机程序从经验E中学习,解决某一任务T,进行某一性能度量P,通过P测定在T上的表现因经验E而提高。

      用一种通俗的说法就是机器从大量数据中学习,总结出一个符合客观规律的模型,令机器使用该模型解决某项任务,机器使用该模型解决问题的表现得到了提高。

2 机器学习的分类

1  监督学习

      已有的数据集包含了输入和输出的关系,通过输入可以获取输出的明确结果。通过这种数据集训练得到一个最优的模型。换而言之,监督学习所使用的数据集既有特征也有标签,通过训练,机器可以学习到特征与标签的对应关系,当机器遇到只有特征没有标签的数据时,可以根据已有模型推断出对应的标签。监督学习同样包括两种分类,即分类问题和回归问题。

分类问题

      分类问题所输出的是连续型变量。比如针对房屋价格的预测问题就是一个典型的分类问题,根据房屋面积的不同售价也会有差异,但售价并不是一个离散变量而是一个连续变量。

回归问题

      回归问题所输出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值