目录
1 机器学习的定义
课程中关于机器学习的表述:计算机程序从经验E中学习,解决某一任务T,进行某一性能度量P,通过P测定在T上的表现因经验E而提高。
用一种通俗的说法就是机器从大量数据中学习,总结出一个符合客观规律的模型,令机器使用该模型解决某项任务,机器使用该模型解决问题的表现得到了提高。
2 机器学习的分类
1 监督学习
已有的数据集包含了输入和输出的关系,通过输入可以获取输出的明确结果。通过这种数据集训练得到一个最优的模型。换而言之,监督学习所使用的数据集既有特征也有标签,通过训练,机器可以学习到特征与标签的对应关系,当机器遇到只有特征没有标签的数据时,可以根据已有模型推断出对应的标签。监督学习同样包括两种分类,即分类问题和回归问题。
分类问题
分类问题所输出的是连续型变量。比如针对房屋价格的预测问题就是一个典型的分类问题,根据房屋面积的不同售价也会有差异,但售价并不是一个离散变量而是一个连续变量。
回归问题
回归问题所输出