动态规划:
1.数阶梯( 从大整理的思路 )
1.1. 实现:
f(10) = f(9)+f(8)
f (9) = f(8) + f(7)
f (8) = f(7) + f(6)
…
f(3) = f(2) + f(1)
即通用公式为: f(n) = f(n-1) + f(n-2)
1.2. 优化:
记录计算过的阶梯数
2.整数乘积问题
一个整数n分解位k个乘积最大的整数 ( 从小整理的思路 )
最大值m = max( i *(n - i),
public int integerBreak(int n) {
int[] dp = new int[n + 1];
dp[1] = 1;
for(int i = 2; i <= n; i++) {
for(int j = 1; j <= i - 1; j++) {
dp[i] = Math.max(dp[i], Math.max(j * dp[i - j], j * (i - j)));
}
}
return dp[n];
}
3.最小路径问题
给定一个 n * m 的矩阵 a,从左上角开始每次只能向右或者向下走,最后到达右下角的位置,路径上所有的数字累加起来就是路径和,输出所有的路径中最小的路径和。
数据范围:
1 ≤ n, m ≤ 500
1≤n,m≤500,矩阵中任意值都满足 0≤ai,j ≤100
要求:时间复杂度 O(nm)
例如:当输入[[1,3,5,9],[8,1,3,4],[5,0,6,1],[8,8,4,0]]时,对应的返回值为12,
所选择的最小累加和路径如下图所示:
class Solution {
public:
/**
*
* @param matrix int整型vector<vector<>> the matrix
* @return int整型
*/
int minPathSum(vector<vector<int> >& matrix) {
int row = matrix.size(), col = matrix[0].size();
vector<vector<int>> dp( row, vector<int>(col) );
dp[0][0] = matrix[0][0];
for(int i = 1; i < col; i++){
dp[0][i] = dp[0][i-1] + matrix[0][i];
}
for(int i = 1; i < row; i++){
dp[i][0] = dp[i-1][0] + matrix[i][0];
}
for( int i = 1; i< row; i++ ){
for( int j = 1; j < col; j ++){
dp[i][j] = min(dp[i-1][j], dp[i][j -1]) + matrix[i][j];
}
}
return dp