通用算法总结

本文总结了动态规划的应用,包括数阶梯问题、整数乘积问题、最小路径问题、编辑距离问题、正则匹配和最长括号子串的BM77算法。还介绍了股票买卖问题,讨论了动态规划的解决方案和状态转移方程。
摘要由CSDN通过智能技术生成

动态规划:

1.数阶梯( 从大整理的思路 )

1.1. 实现:
f(10) = f(9)+f(8)
f (9) = f(8) + f(7)
f (8) = f(7) + f(6)

f(3) = f(2) + f(1)
即通用公式为: f(n) = f(n-1) + f(n-2)

1.2. 优化:
记录计算过的阶梯数

2.整数乘积问题

一个整数n分解位k个乘积最大的整数 ( 从小整理的思路 )

最大值m = max( i *(n - i),

public int integerBreak(int n) {
   
    int[] dp = new int[n + 1];
    dp[1] = 1;
    for(int i = 2; i <= n; i++) {
   
        for(int j = 1; j <= i - 1; j++) {
   
            dp[i] = Math.max(dp[i], Math.max(j * dp[i - j], j * (i - j)));
        }
    }
    return dp[n];
}
3.最小路径问题

给定一个 n * m 的矩阵 a,从左上角开始每次只能向右或者向下走,最后到达右下角的位置,路径上所有的数字累加起来就是路径和,输出所有的路径中最小的路径和。

数据范围:
1 ≤ n, m ≤ 500
1≤n,m≤500,矩阵中任意值都满足 0≤ai,j ≤100
要求:时间复杂度 O(nm)

例如:当输入[[1,3,5,9],[8,1,3,4],[5,0,6,1],[8,8,4,0]]时,对应的返回值为12,
所选择的最小累加和路径如下图所示:

class Solution {
   
public:
    /**
     * 
     * @param matrix int整型vector<vector<>> the matrix
     * @return int整型
     */
    int minPathSum(vector<vector<int> >& matrix) {
   
        int row = matrix.size(), col = matrix[0].size();
        vector<vector<int>> dp( row, vector<int>(col) );

        dp[0][0] = matrix[0][0];

        for(int i = 1; i < col; i++){
   
            dp[0][i] = dp[0][i-1] + matrix[0][i];
        }

        for(int i = 1; i < row; i++){
   
            dp[i][0] = dp[i-1][0] + matrix[i][0];
        }

        for( int i = 1; i< row; i++ ){
   
            for( int j = 1; j < col; j ++){
   
                dp[i][j] =  min(dp[i-1][j], dp[i][j -1]) + matrix[i][j];
            }
        }
        return dp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值