Description
Today, Wet Shark is given n bishops on a 1000 by 1000 grid. Both rows and columns of the grid are numbered from 1 to 1000. Rows are numbered from top to bottom, while columns are numbered from left to right.
Wet Shark thinks that two bishops attack each other if they share the same diagonal. Note, that this is the only criteria, so two bishops may attack each other (according to Wet Shark) even if there is another bishop located between them. Now Wet Shark wants to count the number of pairs of bishops that attack each other.
Input
The first line of the input contains n (1 ≤ n ≤ 200 000) — the number of bishops.
Each of next n lines contains two space separated integers xi and yi (1 ≤ xi, yi ≤ 1000) — the number of row and the number of column where i-th bishop is positioned. It's guaranteed that no two bishops share the same position.
Output
Output one integer — the number of pairs of bishops which attack each other.
Sample Input
5 1 1 1 5 3 3 5 1 5 5
6
3 1 1 2 3 3 5
0
Hint
In the first sample following pairs of bishops attack each other: (1, 3), (1, 5), (2, 3), (2, 4), (3, 4) and (3, 5). Pairs (1, 2), (1, 4),(2, 5) and (4, 5) do not attack each other because they do not share the same diagonal.
题意:1000*1000的棋盘上有N个点,在同一对角线上的任意点可以互相攻击,问有多少对这样的点。
数据太大 不能暴力枚举;
知识:主对角线:从左上到右下的对角线;
副对角线:从右上到左下的对角线。
题解:矩阵:同一主对角线上的点横 纵 坐标的和相等;
同一副对角线上的点横 纵 坐标的差相等;
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int main()
{
int n,x,y,a[2005],b[2005];
long long sum;
while(~scanf("%d",&n))
{
sum=0;
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i=0;i<n;i++)
{
scanf("%d%d",&x,&y);
a[x+y]++;//记录同一主对角线上的点(各点坐标x,y的和相等)
b[x-y+1000]++;//记录同一副对角线上的点(各点坐标x,y的差相等)
} //x-y+1000防溢出
for(int i=0;i<2000;i++)
{
sum+=a[i]*(a[i]-1)/2;
sum+=b[i]*(b[i]-1)/2;
}
printf("%lld\n",sum);
}
return 0;
}