51nod 1202 子序列个数 (组合数学 +动态规划)

题目来源:  福州大学 OJ
基准时间限制:1 秒 空间限制:131072 KB 分值: 40  难度:4级算法题
 收藏
 关注
子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量。由于答案比较大,输出Mod 10^9 + 7的结果即可。
Input
第1行:一个数N,表示序列的长度(1 <= N <= 100000)
第2 - N + 1行:序列中的元素(1 <= a[i] <= 100000)
Output
输出a的不同子序列的数量Mod 10^9 + 7。
Input示例
4
1
2
3
2
Output示例
13
用dp[i]表示加入第i个元素后的最多的子序列数, mark[a[i]] 表示啊a[i ]最近一次出现的位置。

分两种情况:

一、 a[i]未出现过  dp[i]=dp[i-1]*2+1

二、a[i]出现过  dp[i]=dp[i-1]*2+d[mark[a[i]-1]

注意:dp[1]=1 ;mark[1]=1;

注意取余……

code

#include <iostream>
#include<cstdio>
#include<cstring>
#define mod 1000000007
using namespace std;
int a[100010],mark[100010];
long long dp[100010];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    memset(mark,0,sizeof(mark));
    dp[1]=1;
    mark[a[1]]=1;
    for(int i=2;i<=n;i++)
    {
        if(!mark[a[i]])
            dp[i]=(dp[i-1]*2+1)%mod;
        else
            dp[i]=(dp[i-1]*2-dp[mark[a[i]]-1]+mod)%mod;
        mark[a[i]]=i;
    }
    printf("%lld\n",dp[n]%mod);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值