- 博客(19)
- 收藏
- 关注
原创 从rookie到基佬~019:深度学习放射组学(DLR)详解
深度学习放射组学(Deep Learning Radiomics,DLR)是结合了深度学习和放射组学的交叉领域研究。放射组学是通过分析医学影像数据中的特征提取和计算,来帮助预测疾病诊断、治疗反应和患者预后等方面的信息。传统上,放射组学主要依赖人工提取的图像特征,这些特征通常基于医学领域专家的知识和经验。然而,随着深度学习的发展,深度学习放射组学开始利用深度神经网络等深度学习技术,从原始医学影像数据中学习和提取更具代表性和鉴别能力的特征,以改进疾病诊断和预测的准确性。
2023-08-03 17:19:09 1679
原创 从rookie到基佬~018:BEIT-3基础概念解析-Multiway Transformer
BEiT-3 的创新之处包含三个方面:骨干网络:Multiway Transformer。研究员们将 Multiway Transformer 作为骨干网络以对不同模态进行编码。每个 Multiway Transformer 由一个共享的自注意力模块(self-attention)和多个模态专家(modality experts)组成,每个模态专家都是一个前馈神经网络(feed-forward network)。
2023-08-02 16:06:39 250
原创 从rookie到基佬~017:BEIT-3基础概念解析-Modality experts
原文:Wang W, Bao H, Dong L, et al. Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks[J]. arXiv preprint arXiv:2208.10442, 2022.“BEiT-3 的创新之处包含三个方面:骨干网络:Multiway Transformer。研究员们将 Multiway Transformer 作为骨干网络以对不同模态进行编码。
2023-08-02 15:44:47 174
原创 从rookie到基佬~015:Python dicom文件tag信息提取
一天一个变弯小技巧今日份洗脑: Python dicom文件tag信息提取结论:我怎么也想不到,用软件提取会出错…还得是Python编程保平安说出来你可能不信,不同软件提取的tag不一样,而且还有对错一说本人在某研究院,不想涉及泄密,所以仅分享方法,内容全部打码保平安**RadiAntViewer**之前一直用RadiAntViewer.exe 读数据,简单好用还有官方中文,美滋滋,直到遇到某特别任务,领导居然告诉我用这个提取的tag格式是错的…,必须要用mricron,百思不得其姐mr
2022-01-13 16:42:30 813
原创 从rookie到基佬~014:Python代码 DICOM(.dcm)数据转化为NIFTI(.nii)数据
一天一个变弯小技巧今日份洗脑: DICOM(.dcm)数据转化为NIFTI(.nii)数据结论:SimpleITK:他好,我也好,汇源肾宝医学图像的存储格式1、NIFTI(.nii)是Neuroimaging−Informatics−Technology−Initiative即神经影像信息技术,NIFTI格式被认为ANALYZE7.5格式的替代品。NIFTI最初是用于神经成像的,但它也适用于一些其他的领域。NIFTI中一个主要的特点在于它包含了两个仿射坐标定义,这两个仿射坐标定义能够将每个体素指标(
2022-01-11 10:00:52 2133 4
原创 从rookie到基佬~013:损失函数(分析)
高产似母猪结论:~在机器学习中,所有的机器学习算法都或多或少的依赖于对目标函数最大化或者最小化的过程,我们常常把最小化的函数称为损失函数,它主要用于衡量机器学习模型的预测能力。分析~在机器学习的任务中,损失函数的选取十分重要。针对不同问题,应该选取最合适的损失函数。充分理解不同类型损失函数的特性有助于我们求解实际应用问题,在任务中得到更好的优化结果。这也有助于我们理解机器学习的本质,以及它本后的数学支撑,为进一步的研究做好准备。机器学习分为四大块,分别是 classification (分类),
2021-12-09 16:32:50 172
原创 从rookie到基佬~012:损失函数
一天一个变弯小技巧今日份洗脑:损失函数结论:损失函数(loss function)或代价函数(cost function)是将随机事件或其有关随机变量的取值映射为非负实数以**表示该随机事件的“风险”或“损失”的函数。**在应用中,损失函数通常作为学习准则与优化问题相联系,即通过最小化损失函数求解和评估模型。例如在统计学和机器学习中被用于模型的参数估计(parametric estimation)各人自扫门前雪,莫管他家瓦上霜机器学习的三要素就是:表示,评估和优化。表示指的是将样本空间映射到一个合
2021-12-09 16:09:42 109
原创 从rookie到基佬~011:MICCAI 2021 | Attention-Reg:医学图像配准的跨模态注意力
今日变弯小技巧:MICCAI 2021 | Attention-Reg:医学图像配准的跨模态注意力结论:一种专门用于跨模态图像配准的自注意力机制。提出的交叉通道注意块有效地将一个卷中的每个特征映射到相应卷中的所有特征。嵌入跨模态注意块的CNN网络比先进的CNN网络的性能好10倍。正片开始**如有错误,欢迎大家指正。**...
2021-12-08 16:43:50 3197 1
原创 从rookie到基佬~010:RNN和CNN的区别
高产似母猪今日变弯小技巧:RNN和CNN的区别结论:RNN(循环神经网络),当前节点的输入包含之前所有节点信息。CNN(卷积神经网络),当前节点的输入以树结构形式仅包含上一层节点信息CNN神经网络:人类的视觉总是会关注视线内特征最明显的点。RNN神经网络:事物的发展是按照时间序列展开的,即前一刻发生的事物会对未来的事情的发展产生影响。绫波丽镇楼RNN(循环神经网络),和CNN(卷积神经网络)是深度学习经常进行比较的两个概念RNN(循环神经网络),当前节点的输入包含之前所有节点信息。CNN(
2021-12-07 15:57:13 334
原创 从rookie到基佬~009:无密码卸载Symantec
今天是变直小技巧今日份洗脑:无密码情况下卸载Symantec(赛门铁克)结论:赛门铁克的服务一旦启动,怎么卸载都需要密码,反过来说,你不让他启动,他就是待宰的羔羊。坐标国内某企业研究院,入职的时候配了一台卖国者R9000X,预装了亿赛通、思科和赛门铁克,用的一肚子火,亿赛通加密电脑文件我还能理解,思科和赛门铁克这两个洋垃圾就让我很不爽,各种实用工具装不上被拦截不说, iTunes和爱思装一次给我拦截一次,连接iPhone手机传点歌都搞不了,华为手机倒是可以。(这是广告,华为打钱,手动滑鸡)天下苦赛门
2021-12-07 11:02:09 2136
原创 从rookie到基佬~008:Transformer
一天一个变弯小技巧今日份洗脑:Transformer用于语义分割结论:TransFuse、TransUNet、SETR一、TransFuse论文链接:https://arxiv.org/abs/2102.08005在本文中,我们研究了更具挑战性的问题,即在不损失low-level细节的定位能力的情况下提高全局上下文建模效率的问题。提出了一种新颖的两分支架构TransFuse,该架构以并行方式结合了Transformers和CNN。使用TransFuse,可以以较浅的方式有效地捕获全局依赖性和lo
2021-12-03 13:56:05 263
原创 从rookie到基佬~007:Visio 网络模型 框架图 输入 数学公式 符号
一天一个变弯小技巧今日份洗脑:Visio 画深度学习的网络模型框架图如何输入数学公式和符号结论:工具栏切换至【插入】操作界面,然后点击【对象】,在弹框中选择【Microsoft公式3.0】操作演示如下步骤一:工具栏切换至【插入】操作界面,然后点击【对象】步骤二:在弹框中选择【Microsoft公式3.0】步骤三:请开始你的表演步骤四:一键三连长智慧,读书人的事,能有什么坏心眼呢?...
2021-12-02 10:58:08 1829
原创 从rookie到基佬~006:上采样 下采样 卷积 池化 转置卷积 双线性插值 ,以经典算法U-Net举栗说明
一天一个变弯小技巧今日份洗脑:上采样、下采样、卷积、池化、转置卷积结论:我不是针对谁,在座的各位,都是精英。缩小图像:或称为下采样(subsampled)或降采样(downsampled)关于采样与池化的关系:其实下采样就是池化采样层是使用 pooling的相关技术来实现的,目的就是用来降低特征的维度并保留有效信息,一定程度上避免过拟合。但是pooling的目的不仅仅是这些,他的目的是保持旋转、平移、伸缩不变形等。采样有最大值采样,平均值采样,求和区域采样和随机区域采样等。池化也是这样的,比如最大
2021-12-01 16:49:42 760
原创 从rookie到基佬~005:模型保存
一天一个变弯小技巧今日份洗脑:模型保存结论:千万不要无脑保存所有模型,记得写个判断,不然训练一万五千轮后电脑会长胖十公斤,亲测结局极度舒适。错误示范正确操作示范亲测一键三连长智慧,我能有什么坏心眼呢?...
2021-11-26 09:22:44 106
原创 从rookie到基佬~004:Linux服务器离线训练
一天一个变弯小技巧今日份洗脑:Linux服务器离线模型继续训练结论:screen简单好用又可靠步骤一:建立screenscreen -S name步骤二:激活环境source activate xx步骤三:运行代码该干啥干啥其他screen命令screen -S name创建screen -ls查询窗口screen -r name进入kill -9 id ,screen -wipe删除screen...
2021-11-25 10:49:21 525
原创 从rookie到基佬~003:参考文献
今日份洗脑:插入参考文献结论:1、word中交叉引用YYDS,简单又实用。步骤一:先写好参考文献,确保参考文献编号的格式正确(编号需要自动生成,不能手动添加)。编号生成简单方法如图步骤二:引用参考文献,将鼠标的光标放置在需要插入参考文献的位置。在菜单栏中点击【引用】>【交叉引用】,弹出交叉引用操作框。引用类型:编号项。引用内容:段落编号。引用哪一个编号项:选择【1】步骤三:选中以引用的参考文献编号,在菜单栏中点击【开始】>【上标】,快捷键:【ctrl】+【shift】+
2021-11-24 12:31:06 202
原创 从rookie到基佬~002:注意力机制
今日份洗脑:注意力机制结论:1、人类视觉注意力机制,扫描全局图像,获得重点关注区域,投入更多经历,抑制其它无用信息,提高视觉信息处理的效率与准确性。2、遇事不决就加注意力。资料1:计算机视觉中的注意力机制总结视觉中的注意力机制计算机视觉(computer vision)中的注意力机制(attention)的基本思想就是想让系统学会注意力——能够忽略无关信息而关注重点信息。注意力机制一种是软注意力(soft attention),另一种则是强注意力(hard attention)。一、 软注意
2021-11-23 15:43:07 2380
原创 从rookie到基佬~001:通道数
今日份洗脑:通道数结论:通道数不需要计算,输入通道与输入图像的通道数相同,输出通道由人工设定【卷积核个数】,通道数又称卷积深度。资料1:卷积神经网络中的卷积反卷积及池化计算公式、特征图通道数(维度)变化、卷积核大小与深度等概念解释链接:https://www.pianshen.com/article/1330939947/1.计算公式设:图像宽为W,高为H,通道数为C;卷积核尺寸为K,通道数为D,个数为N;卷积运算步长为S,0填充大小为P;输入和输出量分别以1和2表示。卷积:W2 =
2021-11-19 14:14:55 2970
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人