线性筛——素数

线性筛素数算法确保每个数仅被其最小质因子筛除,从而实现O(n)的时间复杂度。算法核心在于合数由最小质因子筛选,避免重复筛选导致复杂度上升。理解这一原理对于实现高效素数筛至关重要。通过代码实现,帮助读者更好地理解和应用线性筛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性筛素数,可以保证每一个数都是被其最小的质因子筛掉的,所以可以保证时间复杂度在O(n)。

算法分析:
算法的关键在于第二个for循环的break语句。此处的break是为了保证任何一个合数都是被它的最小质因子筛掉的,所以能够保证每个数都自会被访问一次,这也就保证了复杂度是线性的。

break处的再解释:
该算法的核心是保证每个数都只被它最小的质因子筛掉(理解这一点非常重要)
我们知道任意一个数a可以作如下分解: a = p 1 t 1 ⋅ p 2 t 2 ⋅ p 3 t 3 ⋯ p n t n a=p_1^{t_1}\cdot p_2^{t_2}\cdot p_3^{t_3}\cdots p_n^{t_n} a=p1t1p2t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值