二叉树中节点的最大距离

距离:将二叉树看着无环图,图的某一条路径的长度称为相应两点的距离

分析:

(1)如果这条路径通过根节点,这最大距离为 (h1-1)+(h2+1)+2=h1+h2 其中h1,h2分别为左右子树的高度;

(2)如果这条路径不通过根节点,则问题转换为左子树距离和右子树距离的最大值。

算法即使在上面两种情况中求最大值。算法采用递归的方式实现,递归过程中同时求子树的高度。

例子:


代码:

#include <iostream>
using namespace std;

struct BTreeNode
{
    BTreeNode* pLeft;
    BTreeNode* pRight;
    BTreeNode() {
        pLeft = pRight = NULL;
    }
    // value of tree node is not used in this program.
};

struct Pair
{
    int dis;
    int height;
    Pair(int d, int h){
        dis = d;
        height = h;
    }
};

int max(int a, int b) {
    return a > b ? a:b;
}

Pair* disOfBT(BTreeNode* root) {
    Pair* p1 = new Pair(0, 0), *p2 = new Pair(0, 0);
    if(root->pLeft != NULL) {
        p1 = disOfBT(root->pLeft);
    }
    if(root->pRight != NULL) {
        p2 = disOfBT(root->pRight);
    }
    int height = max(p1->height, p2->height)+1;
    int dis = max(max(p1->dis, p2->dis), p1->height+p2->height);
    return new Pair(dis, height);
}

int main() {
    // case 1:
    BTreeNode* root = new BTreeNode;
    root->pLeft = new BTreeNode;
    root->pLeft->pLeft = new BTreeNode;
    root->pLeft->pRight = new BTreeNode;
    root->pLeft->pRight->pLeft = new BTreeNode;

    root->pRight = new BTreeNode;
    root->pRight->pLeft = new BTreeNode;
    root->pRight->pRight = new BTreeNode;
    root->pRight->pRight->pLeft = new BTreeNode;

    cout << disOfBT(root)->dis << endl;
    
    // case 2:
    BTreeNode* root1 = new BTreeNode;
    root1->pLeft = root;
    root1->pRight = new BTreeNode;

    cout << disOfBT(root1)->dis << endl;
    return 0;
}

扩展:

上面的距离定义中每一条边的权重相等。如果权重没有限制的话,分析部分的第一种情况会发生变化。当最大距离的路径经过根节点时,过左右两边子树根节点的路径的最大长度不一定为高度。可以预先处理一遍整棵树,从叶节点开始,记录每个点到叶节点的最长(权重)路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值