洛谷递归专题10题

本文详细介绍了10道涉及递归的算法题目,包括递归求和、Hermite多项式、递归函数求值、汉诺塔问题、字符串逆序、费波那契数列、麦卡锡的F91函数、最大公约数与最小公倍数计算,以及走台阶问题。每道题目均给出了问题描述、输入输出样例和递归解决方案的分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

T1 递归求和

题目描述

用递归的方法求1+2+3+4+…+(n-1)+n的值。

输入格式

一个整数n。(1<=n<=10000).

输出格式

一个整数,数列的和。

输入输出样例

输入

10
55

分析

很简单的等差数列。递归函数式为:

if (n为1)返回1
否则返回 n + f(n)

代码如下

#include <bits/stdc++.h>
using namespace std;

int n; 

int f(int n){
   //根据递归式写函数
	if (n == 1)
		return 1;
	return n + f(n - 1);
}

int main(){
   	
	cin >> n;
	cout << f(n) << endl;
	return 0;
}

T2 Hermite多项式

用递归的方法求Hermite多项式的值

在这里插入图片描述
对给定的实数x和正整数n,求多项式值。

输入格式

两个数x,n。用空格隔开。(-1<x<1,1<=n<=20)

输出格式

一个数,函数值。(保留两位小数 )

输入输出样例

输入 #1

-0.10 1

输出 #1

-0.20

分析

题目已经列出递归关系式,直接照着写即可
注:要审清题意,题目要求保留两位小数
代码如下

#include<bits/stdc++.h>
using namespace std;

double n, x;

double f(double x, double n){
   
	if (n == 0) return 1;
	if (n == 1) return 2 * x;
	return 2 * x * f(x, n - 1) - 2 * (n - 1) * f(x, n - 2);
}

int main(){
   
	cin >> x >> n;
	double ans = f(x, n); 
	cout << fixed << setprecision(2) << ans << endl;
	return 0;
} 

T3 递归函数求值1

已知
[外链图片转存失败,源站可能有防盗在这里插入!链机制,建描述]议将图片上https://传(imblog.csd9g.cn/kYmZ6276ac4871d24d92f9184be6ce99.png98935)(https://imgblog.csdnimg.cn/6276ac4871d24d9b9832f91845e6ce99.png)]

用递归方法求解。

输入格式

一行有两个整数x和n,用空格隔开。(1<x<30000,1<=n<=10000)

输出格式

一个实数,即函数值。(保留两位小数

输入输出样例

输入 #1

24499 8564

输出 #1

2.86

分析

这题比上题稍微复杂一点,没有直接列出递归关系式。
我们先找出原式中重复的地方:都是 x n + … {x} \over {n+…} n+x
所以递归的截至应该是当n=1时,由此写出代码。
注:1·题目要求保留两位小数。
2·如果从n开始的话,到1只会从 x ( n − 1

<think>好的,用户想查询洛谷平台上与棋类相关的编程问题目。我需要先回顾一下洛谷库,看看有没有相关的题目。 首先,洛谷题目涵盖了很多算法数据结构的内容,其中可能有一些涉及棋类游戏的题目。比如,像八皇后问、棋盘覆盖、马踏棋盘(骑士周游)等问都是常见的算法题目。这些题目通常涉及搜索算法,如深度优先搜索(DFS)或广度优先搜索(BFS),以及动态规划等。 根据用户提供的引用内容,引用[1]提到了DFS搜索专题,引用[3]提到了前缀和的应用。虽然这些引用没有直接提到棋类问,但可以推测棋类问可能涉及类似的算法。例如,八皇后问通常用DFS解决,而棋盘覆盖可能涉及分治算法。 接下来,我需要确认洛谷是否有具体的棋类题目编号。例如,洛谷P1219是八皇后问,P1548是棋盘覆盖问,P1605可能与迷宫问相关,但用户需要的是棋类,可能需要具体题目。另外,像P1433吃奶酪虽然不直接是棋类,但涉及搜索和路径规划,可能相关。 用户可能需要具体的题目编号和解思路。比如,八皇后问要求放置皇后使其不互相攻击,通常用回溯法解决。棋盘覆盖问用分治法解决,将棋盘分成四块,递归处理。马踏棋盘问则用DFS或启发式搜索如Warnsdorff算法。 此外,用户可能需要代码示例,比如八皇后问的DFS实现,或者棋盘覆盖的分治代码。需要注意代码的正确性和效率,比如引用[2]提到开long long避免溢出,这在处理大规模棋盘时可能重要。 用户可能还希望知道如何优化这些算法,比如剪枝策略或记忆化技术。例如,在DFS中剪枝可以提前排除无效路径,减少计算量。引用[3]中的前缀和思想可能用于统计棋盘上的某些模式,帮助快速判断条件。 最后,我需要整理这些信息,分点列出相关题目,提供解思路和可能的代码结构,同时生成相关问供用户进一步学习。</think>### 洛谷平台棋类相关编程问与解思路 以下是洛谷平台中与棋类相关的典型题目及解方法: --- #### 1. **八皇后问洛谷P1219)** **题目要求**:在$8×8$棋盘上放置8个皇后,使其互不攻击(即不在同一行、列、对角线)[^1]。 **解思路**: - **深度优先搜索(DFS)**:逐行放置皇后,记录已占用的列和两个对角线方向的状态。 - **剪枝优化**:若当前列或对角线已被占用,跳过该位置。 **代码框架**: ```cpp #include<bits/stdc++.h> using namespace std; int col[20], diag1[40], diag2[40], ans[100], cnt; void dfs(int row) { if (row > 8) { cnt++; return; } for (int i = 1; i <= 8; i++) { if (!col[i] && !diag1[row + i] && !diag2[row - i + 8]) { col[i] = diag1[row + i] = diag2[row - i + 8] = 1; dfs(row + 1); col[i] = diag1[row + i] = diag2[row - i + 8] = 0; } } } int main() { dfs(1); cout << cnt; return 0; } ``` --- #### 2. **棋盘覆盖问洛谷P1548)** **题目要求**:用$L$型骨牌覆盖$2^k×2^k$的残缺棋盘,要求恰好覆盖所有非残缺区域[^3]。 **解思路**: - **分治算法**:将棋盘分为4个子棋盘,递归处理有残缺块的3个子棋盘,并在中心放置一个骨牌。 - **递归终止条件**:棋盘大小为$2×2$时直接填充骨牌。 **代码关键步骤**: ```cpp void cover(int x, int y, int size, int dx, int dy) { if (size == 1) return; int t = ++tile_num; int s = size / 2; // 递归覆盖四个子区域 if (dx < x + s && dy < y + s) cover(x, y, s, dx, dy); else board[x + s - 1][y + s - 1] = t; // 类似处理其他三个子棋盘... } ``` --- #### 3. **骑士周游问(马踏棋盘)** **题目要求**:给定起点,判断马能否不重复地走遍整个棋盘。 **解思路**: - **DFS+回溯**:尝试所有可能的移动方向,若路径无法完成则回溯。 - **优化策略**:使用**Warnsdorff规则**优先选择下一步可能性少的位置,减少递归深度。 **代码片段**: ```cpp int dx[] = {2, 1, -1, -2, -2, -1, 1, 2}; int dy[] = {1, 2, 2, 1, -1, -2, -2, -1}; bool dfs(int x, int y, int step) { board[x][y] = step; if (step == n * n) return true; vector<pair<int, int>> next; for (int i = 0; i < 8; i++) { int nx = x + dx[i], ny = y + dy[i]; if (nx >= 0 && ny >= 0 && nx < n && ny < n && board[nx][ny] == 0) { int cnt = 0; // 计算下一步的可走方向数 for (int j = 0; j < 8; j++) if (nx + dx[j] >= 0 && ny + dy[j] >= 0 && ...) cnt++; next.push_back({cnt, i}); } } sort(next.begin(), next.end()); // 按可能性排序 for (auto p : next) { int i = p.second; if (dfs(x + dx[i], y + dy[i], step + 1)) return true; } board[x][y] = 0; // 回溯 return false; } ``` --- #### 4. **其他相关题目** - **P1433 吃奶酪**:虽然不是棋类,但涉及路径规划和状态压缩DP,类似棋盘遍历问[^3]。 - **P2697 宝石串**:利用前缀和思想判断区间平衡性,可用于棋盘颜色分布统计。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值