曾经遇到过这样一道题:
在一个定义了直角坐标系的纸上,画一个(x1,y1)到(x2,y2)的矩形指将横坐标范围从x1到x2,纵坐标范围从y1到y2之间的区域涂上颜色。
下图给出了一个画了两个矩形的例子。第一个矩形是(1,1) 到(4, 4),用绿色和紫色表示。第二个矩形是(2, 3)到(6, 5),用蓝色和紫色表示。图中,一共有15个单位的面积被涂上颜色,其中紫色部分被涂了两次,但在计算面积时只计算一次。在实际的涂色过程中,所有的矩形都涂成统一的颜色,图中显示不同颜色仅为说明方便。
给出所有要画的矩形,请问总共有多少个单位的面积被涂上颜色。
评测用例规模与约定
1<=n<=100,0<=横坐标、纵坐标<=100
输入
输入的第一行包含一个整数n,表示要画的矩形的个数。
接下来n行,每行4个非负整数,分别表示要画的矩形的左下角的横坐标与纵坐标,以及右上角的横坐标与纵坐标。
输出
输出一个整数,表示有多少个单位的面积被涂上颜色。
开始做这道题的时候,想用数学的方法,总面积减去重合面积,但是开始码的遇到·一些·问题,重合面积无法用两个坐标估算,重合难以解决
于是去搜了一下资料,原来在这道题目可以用坐标记的方法来处理。由题目可以得,此题所有的方块在【0,100】【0,100】中间,1万个方块,什么叫做做标记,
即在自己的心里默认,一个坐标代表着以此坐标为左下角或者右上角的一个方块,所以最多有99x99个坐标,当输入一个大正方形,搜索里面所有的左下角方块,要是不在结果方块里面
就把结果数组值改为1,最后搜索有多少输入多少个1就可以知道结果。//这个是思路,参考了别人的思路
最后总结一下,这种做标记的方法,在坐标系中可以套用一下。
具体实现代码如下:
int result[100][100];
int n,number=0;
cin>>n;
for(int i=0;i<n;i++)
{
int a,b,c,d;
cin>>a>>b>>c>>d;
for(int i0=a;i0<c;i0++)
{
for(int i1=b;i1<d;i1++)
{
if(result[i0][i1]!=1){
result[i0][i1]=1;
// cout<<"("<<i0<<","<<i1<<")"<<endl;
number++;
}
}
}
}
cout<<number;