ARC下用块(block)的循环引用问题样例探究

ARC下用块(block)的循环引用问题样例探究

循环引用的原因

众所周知,ARC下用block会产生循环引用的问题,造成泄露的原因是啥呢?

最简单的例子,如下面代码:

1
2
3
[self.teacher requestData:^(NSData *data) {
     self.name = @ "case" ;
}];

此种情况是最常见的循环引用导致的内存泄露了,在这里,self强引用了teacher, teacher又强引用了一个block,而该block在回调时又调用了self,会导致该block又强引用了self,造成了一个保留环,最终导致self无法释放。

self -> teacher -> block -> self

一般性的解决方案

1
2
3
4
5
__weak  typeof (self) weakSelf = self;
     [self.teacher requestData:^(NSData *data) {
         typeof (weakSelf) strongSelf = weakSelf;
        strongSelf.name = @ "case" ;
     }];

通过__weak的修饰,先把self弱引用(默认是强引用,实际上self是有个隐藏的__strong修饰的),然后在block回调里用weakSelf,这样就会打破保留环,从而避免了循环引用,如下:

self -> teacher -> block -> weakSelf

PS:一般会在block回调里再强引用一下weakSelf(typeof(weakSelf) strongSelf = weakSelf;),因为__weak修饰的都是存在栈内,可能随时会被系统释放,造成后面调用weakSelf时weakSelf可能已经是nil了,后面用weakSelf调用任何代码都是无效的。

通过demo证明哪些情况下有泄漏

虽然说用block时会产生循环引用,但并不是所有情况下都会有内存泄露的问题,看个demo。

先发demo地址:https://github.com/yuedong56/BlockRetainCycleDemo

  • 进入demo,有个Button,点击Button push到SecondViewController,

  • SecondViewController中有六种情况的Button,每点一个Button会触发一个block,

  • 点击返回,回到首页,如果执行了dealloc,证明SecondViewController正常释放,否则,证明内存泄露了。

01.png

下面只贴demo里的关键代码了,全的代码请自行下载demo,大家看下面的六种情况,是否会产生内存泄漏。

1
2
3
4
5
6
7
//情况一
- (void)case1 {
     NSLog(@ "case 1 Click" );
     dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(0.3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
         self.name = @ "case 1" ;
     });
}
1
2
3
4
5
6
7
8
9
//情况二
- (void)case2 {
     NSLog(@ "case 2 Click" );
     __weak  typeof (self) weakSelf = self;
     [self.teacher requestData:^(NSData *data) {
         typeof (weakSelf) strongSelf = weakSelf;
        strongSelf.name = @ "case 2" ;
     }];
}
1
2
3
4
5
6
7
//情况三
- (void)case3 {
     NSLog(@ "case 3 Click" );
     [self.teacher requestData:^(NSData *data) {
         self.name = @ "case 3" ;
     }];
}
1
2
3
4
5
6
7
8
//情况四
- (void)case4 {
     NSLog(@ "case 4 Click" );
     [self.teacher requestData:^(NSData *data) {
         self.name = @ "case 4" ;
         self.teacher = nil;
     }];
}
1
2
3
4
5
6
7
8
//情况五
- (void)case5 {
     NSLog(@ "case 5 Click" );
     Teacher *t = [[Teacher alloc] init];
     [t requestData:^(NSData *data) {
         self.name = @ "case 5" ;
     }];
}
1
2
3
4
5
6
7
8
9
10
11
//情况六
- (void)case6 {
     NSLog(@ "case 6 Click" );
     [self.teacher callCase6BlackEvent];
     self.teacher.case6Block = ^(NSData *data) {
         self.name = @ "case 6" ;
         //下面两句代码任选其一
         self.teacher = nil;
//        self.teacher.case6Block = nil;
     };
}

分析

  • 情况一:执行了dealloc,不泄露,此情况虽然是block,但未形成保留环block -> self

  • 情况二:执行了dealloc,不泄露,此情况就是内存泄漏后的一般处理了 self ->teacher ->block ->strongSelf,后面那个strongSelf和原来的self并没有直接关系,因为strongSelf是通过weakSelf得来的,而weakSelf又没有强引用原来的self

  • 情况三:未执行dealloc,内存泄漏,此情况就是最典型的循环引用了,形成保留环无法释放,self ->teacher ->block ->self

  • 情况四:执行了dealloc,不泄露,虽然也是保留环,但通过最后一句,使self不再强引用teacher,打破了保留环

  • 情况五:执行了dealloc,不泄露,未形成保留环 t ->block ->self

  • 情况六:执行了dealloc,不泄露,最后两句代码任选其一即可防止内存泄漏,self.teacher 或者 case6Block 置为空都可以打破 retain cycle

PS: 虽然情况四、情况六的写法都可以防止内存泄漏,不过为了统一,个人建议最好还是按照普通写法即情况二的写法。

大家有什么问题可以参考demo,以上纯属个人理解,有不正确的地方,希望大家指出,我的新浪微博:http://weibo.com/1905373741/

参考文章:


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值