【论文阅读】Sparse-RS: a Versatile Framework for Query-EfficientSparse Black-Box Adversarial Attacks

这篇论文是基于分数的稀疏黑盒对抗攻击,采用特定采样的随机搜索方法在L_0范式边界攻击,对抗补丁和对抗框三个稀疏威胁模型下实现了当时最先进的成功率和查询效率。

算法伪代码

k为扰动像素位置,所有扰动位置构成一个集合M;\Delta为添加的扰动值;第三步生成的^{}z_{M}即为对抗样本;第5-11步为迭代过程,论文主要的贡献是为随机搜索算法设计了特定的采样分布,即第6步在特定采样范围内更新扰动像素位置M以及第7步更新扰动值\Delta,来达到提高成功率和查询效率的结果。

L_0攻击采样更新:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值