这篇论文是基于分数的稀疏黑盒对抗攻击,采用特定采样的随机搜索方法在范式边界攻击,对抗补丁和对抗框三个稀疏威胁模型下实现了当时最先进的成功率和查询效率。
算法伪代码
k为扰动像素位置,所有扰动位置构成一个集合M;为添加的扰动值;第三步生成的
即为对抗样本;第5-11步为迭代过程,论文主要的贡献是为随机搜索算法设计了特定的采样分布,即第6步在特定采样范围内更新扰动像素位置M以及第7步更新扰动值
,来达到提高成功率和查询效率的结果。
攻击采样更新:
这篇论文是基于分数的稀疏黑盒对抗攻击,采用特定采样的随机搜索方法在范式边界攻击,对抗补丁和对抗框三个稀疏威胁模型下实现了当时最先进的成功率和查询效率。
算法伪代码
k为扰动像素位置,所有扰动位置构成一个集合M;为添加的扰动值;第三步生成的
即为对抗样本;第5-11步为迭代过程,论文主要的贡献是为随机搜索算法设计了特定的采样分布,即第6步在特定采样范围内更新扰动像素位置M以及第7步更新扰动值
,来达到提高成功率和查询效率的结果。
攻击采样更新: