题意:给出一个由大写字母组成的长度为n的串,然后尽量折叠成一个尽量短的串,折叠可以嵌套。
思路:区间dp,dp(i,j)表示区间(i,j)的最短的串的长度,as(i,j)表示i到j的答案,有两个状态要处理:1.该串本身是重复串,缩段到最短。2.该串不是重复,然后枚举他的分割点把两段最短找出来,然后合并。
code:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int INF=0x3fffffff;
const int inf=-INF;
const int N=1000000;
const int M=105;
const int mod=1000000007;
const double pi=acos(-1.0);
#define cls(x,c) memset(x,c,sizeof(x))
#define cpy(x,a) memcpy(x,a,sizeof(a))
#define ft(i,s,n) for (int i=s;i<=n;i++)
#define frt(i,s,t) for (int i=s;i>=t;i--)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define mk make_pair
#define IN freopen("in.txt","r",stdin);
#define OUT freopen("out.txt","w",stdout);
int dp[M][M];
string s;
string as[M][M];
int check(int l,int r){
ft(i,1,(r-l+1)/2){
if ((r-l+1)%i) continue;
bool f=1;
ft(j,l,r-i)
if (s[j]!=s[j+i])
{
f=0;
break;
}
if (f) return i;
}
return 0;
}
int sol(int l,int r){
int& ans=dp[l][r];
if (ans!=-1) return ans;
if (l==r){
as[l][r]=s[l];
return ans=1;
}
int ret=INF,k;
ft(i,l,r-1){
int tp=sol(l,i)+sol(i+1,r);
if (tp<ret) k=i,ret=tp;
}
as[l][r]=as[l][k]+as[k+1][r];
ret=sol(l,k)+sol(k+1,r);
int t=check(l,r);
if (t){
bool f=1;
ft(i,l,r)
if (s[i]=='('||s[i]==')') f=0;
char ts[10];
sprintf(ts,"%d",(r-l+1)/t);
string tt=ts;
tt+="("+as[l][l+t-1]+")";
if (f&&tt.size()<ret){
ret=tt.size();
as[l][r]=tt;
}
}
return ans=ret;
}
int main()
{
while(cin>>s){
cls(dp,-1);
int len=s.size()-1;
sol(0,len);
cout<<as[0][len]<<endl;
}
}