在半监督学习中,用于细粒度图像分类中精确增强的伪标记方法

2024年9月5日提交的原论文《PEPL: Precision-Enhanced Pseudo-Labeling for Fine-Grained Image Classification in Semi-Supervised Learning》

GitHub - TianSuya/SemiFG: A Semi-supervised framework for fine grained classificationA Semi-supervised framework for fine grained classification - TianSuya/SemiFGicon-default.png?t=O83Ahttps://github.com/TianSuya/SemiFG(注:作者说代码已开源到github,截止2024.09.12暂未看到代码)

一. 研究背景

1. 研究问题:这篇文章要解决的问题是细粒度图像分类中的标注数据稀缺问题。细粒度图像分类涉及区分视觉上相似的类别,这在物种识别、产品分类和医学诊断等应用中起着重要作用。然而,由于获取高质量标注数据的成本高昂且耗时,细粒度图像分类仍然面临重大挑战。

2. 研究难点:该问题的研究难点包括:标注数据稀缺、细粒度特征的分辨难度大、标准数据增强和图像混合技术会破坏关键的细粒度特征。

3. 相关工作:现有的半监督学习方法,如伪标签和一致性正则化,已经在有限监督下提高了模型性能。然而,这些方法在细粒度图像分类中存在显著挑战。由于标准数据增强技术可能会破坏关键的细粒度特征,而图像区域混合可能会忽略对准确分类至关重要的细节。

二. 研究方法

这篇论文提出了精度增强伪标签(Precision-Enhanced Pseudo-Labeling, PEPL)方法,用于解决细粒度图像分类中的半监督学习问题。具体来说,

1. 初始伪标签生成:首先,PEPL方法借鉴了FreeMatch的概念,通过自适应选择置信度阈值来生成初始伪标签。这些阈值基于模型在未标记数据上的预测性能动态调整。具体公式如下:

其中,C表示类别总数,β是预设的超参数,μB表示当前未标注数据的批量大小,qb表示模型的预测输出,τt表示第t步的全局阈值。

2. 混合语义伪标签生成:其次,为了更好地利用未标记图像的潜力,PEPL方法提出了两阶段方法。在第一阶段,随机混合图像并估计混合图像中包含的语义信息。基于前一阶段生成的伪标签,为混合图像创建混合语义伪标签。具体公式如下:

其中,表示从输入a中移除的部分,表示混合到输入a中的部分,S(Ia)和 S(Ib)分别是输入a和b的归一化激活图。

3. 损失函数:最后,整个框架的损失函数分为监督损失Lsup和无监督损失 Lunsup,计算公式如下:

其中,pm表示输入xi在参数为θ时的预测输出,H(⋅)表示交叉熵损失函数,ya和 yb分别是两个语义伪标签,γ和λ分别表示监督和无监督损失的权重。

三. 实验设计

为了评估PEPL的有效性,作者在两个标准的细粒度分类数据集上进行了实验:CUB 200 2011和Stanford Cars。具体实验设置如下:

1.数据集:CUB 200 2011数据集包含11,788张图像,涵盖200个鸟类物种,其中5,994张用于训练,5,794张用于测试。Stanford Cars数据集包含16,185张汽车图像,涵盖196个车型,其中8,144张用于训练,8,041张用于测试。

2.实验环境:实验使用单个NVIDIA A800 80G GPU进行,预训练的ResNet50作为基础分类模型。整体训练设置为200个epoch,标记数据的批量大小为16,未标记数据的批量大小为112(µ = 7)。

3.超参数配置:初始学习率为0.01,每80个epoch减少0.1,达到0.0001后应用余弦退火调度器逐渐降低学习率至0,来训练最后40个迭代。伪标签生成的超参数β设为0.999以确保稳定的增长趋势。监督和无监督损失的权重(γ和λ)均设为1。

四. 结果与分析

1. 主要结果:与经典的半监督学习方法(如Pi-Model和PseudoLabel)以及最先进的方法(如FlexMatch和FreeMatch)相比,PEPL方法在不同标签比例下的分类准确率均表现优异。例如,在CUB 200 2011数据集上,使用20%的标签数据时,PEPL方法的准确率比全监督模型提高了13%。

2. 消融研究为了进一步验证PEPL引入的混合语义伪标签的有效性,作者将其与直接混合和生成伪标签的方法进行了比较。结果表明,添加语义混合后,性能额外提升了约4%到9%。

3. 案例研究通过与FreeMatch方法的对比,PEPL方法在30%标签数据下的分类效果与100%标签数据下的监督学习效果相当。这展示了PEPL方法在增强模型对细粒度特征感知方面的优势。

五. 总体结论

本文提出的PEPL方法有效解决了半监督学习方法在细粒度图像分类领域的挑战。通过利用类激活图生成高质量的伪标签,PEPL克服了标准数据增强和图像混合技术在保留关键细粒度特征方面的局限性。PEPL的简单性和有效性使其成为细粒度分类研究中宝贵的工具,能够显著提高半监督学习的性能,并激发进一步的创新研究。

六. 创新点

1. 提出了Precision-Enhanced Pseudo-Labeling (PEPL)方法:专门针对细粒度图像分类的半监督学习方法。

2. 利用CAMs生成高质量伪标签:通过两个关键阶段(初始伪标签生成和语义混合伪标签生成)逐步细化伪标签,提高伪标签的精度。

3. 解决标准数据增强和图像混合技术的局限性:通过关注语义级信息,有效保留了关键细粒度特征。

4. 在基准数据集上取得了显著的性能提升:在不同标签比例下,PEPL方法均优于现有的半监督策略,并在CUB 200 2011数据集上使用20%标注数据时,准确率比全监督模型提高了13%。

5. 代码开源:提供了详细的代码实现,方便其他研究者复现和使用。

七. 不足点

1. 语义混合伪标签的有效性验证:虽然引入了语义混合伪标签,但需要进一步验证其在不同数据集上的普适性和效果。

2. 下一步工作:未来研究可以进一步优化伪标签生成和混合策略,探索更多创新的半监督学习方法,以进一步提升细粒度图像分类的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BCDBao

放心,我会一直更新创作

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值