【RT】GOODAT/GOOD-D

[AAAI’24]GOODAT: Towards Test-time Graph Out-of-Distribution Detection

在这里插入图片描述
open-world scenarios

在这里插入图片描述
specific model
rely on the training dataset

Challenges

challenge 1: inconsistent learning objective
大部分的GNN都是针对特定的图学习任务(比如图分类)而不是OOD检测进行训练的。
在这种情况下,如何将这些已有的模型与OOD检测的目标结合起来仍然是一个难题。
challenge 2: absence of labels
在测试阶段,图标签的缺乏给无监督检测分布内和分布外图带来了挑战。
设计一个无监督模型。
challenge 3: unavailability of training data
无法了解图神经网络模型原始的训练数据。
限制了我们将OOD检测模型集成到GNN中的能力。

Contributions

  • new paradigm
    lightweight, training data-independent, and plug-and-play
  • novel method
    利用信息瓶颈原理(GIB),GOODAT 从每个输入图中捕获信息丰富的子图
  • extensive experiments

Preliminaries

GIB(graph information bottleneck)

信息瓶颈旨在压缩原始信息来获得与标签相关的关键信息:
m a x Z I ( Y , Z ) − λ I ( G , Z ) max_ZI(Y, Z)- \lambda I(G, Z) maxZI(Y,Z)λI(G,Z)其中 λ 是拉格朗日乘子。

Definition

Test-time graph OOD detection
well-trained GNN f f f (fixed)
a grapg G G G from the test dataset
OOD detector D D D
D e t e c t i o n   l a b e l = { 1 ( O O D ) ,  if  D ( f , G ) ≥ η 0 ( I D ) ,  if  D ( f , G ) < η Detection~label=\begin{cases}1(OOD), & \text{ if } D(f,G)\ge \eta \\ 0(ID), & \text{ if } D(f,G) < \eta \end{cases} Detection label={1(OOD)0(ID), if D(f,G)η if D(f,G)<η

Methods

给定代理标签,GIB用于查找每个输入图与其标签相关性最高的子图。

在这里插入图片描述
在这里插入图片描述
分布外样本的标签是错误的(不同于分布内样本的标签),因此经过压缩得到的子图也会与分布内样本的子图显著不同,从而区分OOD和ID。即,假设测试集中的所有图都是分布内,由这些ID标签压缩的OOD子图应该和ID子图显著不同。

  • subgraph GIB loss
    来求近似 m a x Z I ( Z , Y ) − α I ( Z , G ) , max_ZI(Z,Y)-\alpha I(Z,G), maxZI(Z,Y)αI(Z,G),

  • masked graph GIB loss
    来求近似 m a x Z ′ β I ( Z ′ , G ) − I ( Z ′ , Y ) , max_Z{'}\beta I(Z{'},G)-I(Z{'},Y), maxZβI(Z,G)I(Z,Y),

  • graph distribution separating loss 在这里插入图片描述

Experiments

数据集:
采用GOOD-D提出的评估协议
(分布内、分布外是不同数据集)


graph-level?


[WSDM’23]GOOD-D: On Unsupervised Graph Out-of-Distribution Detection

在这里插入图片描述
“Can we effectively detect OOD graphs solely based on unlabeled in-distribution data”
图对比学习(GCL)方法

无监督图级分布外检测问题
dataset D i n = { G 1 i n , ⋯   , G N 1 i n } D^{in}= \left \{ G_1^{in},\cdots ,G^{in}_{N_1} \right \} Din={G1in,,GN1in} from P i n \mathbb{P}^{in} Pin
dataset D o u t = { G 1 o u t , ⋯   , G N 1 o u t } D^{out}= \left \{ G_1^{out},\cdots ,G^{out}_{N_1} \right \} Dout={G1out,,GN1out} from P o u t \mathbb{P}^{out} Pout
评分函数 s = f ( G ) s=f(G) s=f(G) 越大越是分布外

在这里插入图片描述
对比学习的核心是最大化两个不同视图下样本之间的一致性。

  • 节点特征
    通过集成节点特征和邻接矩阵直接构建feature view

  • 图结构
    从图结构中提取节点级结构编码并将它们与邻接矩阵组合

层次图对比学习

  • node-level constrast
    InfoNCE-like node-level contrastive loss
  • Graph-level constrast
  • group-level constrast

进行跨数据集的实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ca1m4n

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值