描述
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2<=N<=10或N=16)进制数M,其中16进制数字为0-9与A-F,求最少经过几步可以得到回文数。如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”
格式
输入格式
共两行
第一行为进制数N(2<=N<=10或N=16)
第二行为N进制数M(0<=M<=maxlongint)
输出格式
共一行
第一行为“STEP=”加上经过的步数或“Impossible!”
样例1
样例输入1
9
87
样例输出1
STEP=6
限制
各个测试点1s
来源
NOIP1999提高组第2题
#include <iostream>
#include <string>
using namespace std;
int radix, n, sum, a[1001];//定义变量进制数,输入字符串长度,总步数,字符串存放的整数数组
string s;
//判断是否是回文数
bool palindromic(int n)
{
for (int i = 1; i <= n / 2; i++)
if (a[i] != a[n - i + 1])
return false;
return true;
}
//两数相加
int add(int n)
{
int c[1001] = { 0 };//定义临时数组,表示两数的和
for (int i = 1; i <= n; i++)//进制数相加
{
c[i] = a[i] + a[n - i + 1] + c[i];
c[i + 1] += c[i] / radix;
c[i] %= radix;
}
if (c[n + 1])//保留进位
n++;
for (int i = n; i >= 1; i--)
{
a[i] = c[i];
}
return n;
}
int main()
{
cin >> radix >> s;
n = s.size();
for (int i = 1; i <= n; i++)//将字符串转化为整数数组
{
if (s[i - 1] < 65)
a[i] = s[i - 1] - '0';
else
a[i] = s[i - 1] - 55;
}
while (sum <= 30)
{
if (palindromic(n))
{
cout << "STEP=" << sum << endl;
return 0;
}
sum++;
n = add(n);
}
cout << "Impossible!" << endl;
return 0;
}