风险分析
一小平民
平民虽小,心却宽广,一小平民
展开
-
中台风险分析-数学期望的现实意义
数学期望在生活中的应用 摘 要: 数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章内容包括决策、利润、彩票、医疗等方面的一些实例,阐述了数学期望在经济和实际问题中颇有价值的应用。 关键词: 随机变量, 数学期望, 概率 , 统计 数学期原创 2014-10-17 14:15:37 · 3491 阅读 · 0 评论 -
中台风险分析-标准差的现实意义
假定组合回报服从正态分布,即,组合的VAR为组合回报的标准差与相应置信度下分位点的乘积: 其中,为标准正态分布下置信度对应的分位数[laiqb1] ;为一系列组合的头寸权重和头寸回报的协方差矩阵计算,计算公式为=;为持有期。而为: [laiqb1]对应概率下横坐标的值原创 2014-10-17 14:41:05 · 2912 阅读 · 0 评论 -
中台风险分析-正态分布意义(结合期望、标准差)
正态分布现实意义理解(结合标准差、期望)正态分布(Normaldistribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。 定义:若随机变量X服从一个位置参数为u、尺度参数为的概率分布,且其概率密度原创 2014-10-17 16:08:02 · 4562 阅读 · 0 评论 -
风险风险之深入分析协方差意义与算法
我们先回忆一下期望、方差与标准查的原创 2014-10-21 13:13:03 · 5378 阅读 · 0 评论