程序员面试题汇总三
- 面试题汇总三
面试题汇总三
1 B树B+树的区别
B 树
1什么是B树
B 树是为了磁盘或其它存储设备而设计的一种多叉(下面你会看到,相对于二叉,B树每个内结点有多个分支,即多叉)平衡查找树。B树与红黑树最大的不同在于,B树的结点可以有许多子女,从几个到几千个。B树可以在O(logn)
时间内,实现各种如插入(insert),删除(delete)等动态集合操作。
如下图所示,即是一棵B树,一棵关键字为英语中辅音字母的B树,现在要从树种查找字母R(包含n[x]
个关键字的内结点x, x有n[x]+1]个子女(也就是说,一个内结点x若含有n[x]个关键字,那么x将含有n[x]+1个子女)。所有的叶结点都处于相同的深度,带阴影的结点为查找字母R时要检查的结点):
B 树又叫平衡多路查找树。一棵m阶的B 树的特性如下:
1、 树中每个结点最多含有m个孩子(m>=2);
2、 除根结点和叶子结点外,其它每个结点至少有[ceil(m / 2)]个孩子(其中ceil(x)是一个取上限的函数);
3、 若根结点不是叶子结点,则至少有2个孩子(特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点);
4、 所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息
5、 每个非终端结点中包含有n个关键字信息: (n,P0,K1,P1,K2,P2,…,Kn,Pn)。其中:
a) Ki (i=1...n)
为关键字,且关键字按顺序升序排序K(i-1)< Ki。
b) Pi
为指向子树根的接点,且指针P(i-1)
指向子树种所有结点的关键字均小于Ki,但都大于K(i-1)
。
c) 关键字的个数n必须满足: [ceil(m / 2)-1]<= n <= m-1。
如下图所示:
2 B树的类型和节点定义
B树的类型和节点定义如下图所示:
3 B树的高度
B树某一非叶子节点包含N个关键字,则此非叶子节点含有N+1个孩子结点,而所有的叶子结点都在第I层,我们可以得出:
- 因为根至少有两个孩子,因此第2层至少有两个结点。
- 除根和叶子外,其它结点至少有
┌m/2┐
个孩子 - 因此在第3层至少有
2*┌m/2┐
个结点 - 在第4层至少有
2*(┌m/2┐^2)
个结点 - 在第 I 层至少有
2*(┌m/2┐^(l-2) )
个结点,于是有:N+1 ≥ 2*┌m/2┐I-2
- 考虑第L层的结点个数为N+1,那么
2*(┌m/2┐^(l-2))≤N+1
,也就是L层的最少结点数刚好达到N+1个,即:I≤ log┌m/2┐((N+1)/2 )+2;
- 当B树包含N个关键字时,B树的最大高度为l-1(因为计算B树高度时,叶结点所在层不计算在内),即:
l - 1 = log┌m/2┐((N+1)/2 )+1
。
4 B树的插入、删除操作
下面咱们以一棵5阶(即树中任一结点至多含有4个关键字,5棵子树)B树实例进行讲解(如下图所示):
备注:关键字数(2-4个)针对–非根结点(包括叶子结点在内),孩子数(3-5个)–针对根结点和叶子结点之外的内结点。当然,根结点是必须至少有2个孩子的,不然就成直线型搜索树了。
插入(insert)操作:
插入一个元素时,首先在B树中是否存在,如果不存在,即在叶子结点处结束,然后在叶子结点中插入该新的元素,注意:如果叶子结点空间足够,这里需要向右移动该叶子结点中大于新插入关键字的元素,如果空间满了以致没有足够的空间去添加新的元素,则将该结点进行“分裂”,将一半数量的关键字元素分裂到新的其相邻右结点中,中间关键字元素上移到父结点中(当然,如果父结点空间满了,也同样需要“分裂”操作),而且当结点中关键元素向右移动了,相关的指针也需要向右移。如果在根结点插入新元素,空间满了,则进行分裂操作,这样原来的根结点中的中间关键字元素向上移动到新的根结点中,因此导致树的高度增加一层。如下图所示:
1、OK,下面咱们通过一个实例来逐步讲解下。插入以下字符字母到一棵空的B 树中(非根结点关键字数小了(小于2个)就合并,大了(超过4个)就分裂):C N G A H E K Q M F W L T Z D P R X Y S,首先,结点空间足够,4个字母插入相同的结点中,如下图:
2、当咱们试着插入H时,结点发现空间不够,以致将其分裂成2个结点,移动中间元素G上移到新的根结点中,在实现过程中,咱们把A和C留在当前结点中,而H和N放置新的其右邻居结点中。如下图:
3、当咱们插入E,K,Q时,不需要任何分裂操作
4、插入M需要一次分裂,注意M恰好是中间关键字元素,以致向上移到父节点中
5、插入F,W,L,T不需要任何分裂操作
6、插入Z时,最右的叶子结点空间满了,需要进行分裂操作,中间元素T上移到父节点中,注意通过上移中间元素,树最终还是保持平衡,分裂结果的结点存在2个关键字元素。
7、插入D时,导致最左边的叶子结点被分裂,D恰好也是中间元素,上移到父节点中,然后字母P,R,X,Y陆续插入不需要任何分裂操作(别忘了,树中至多5个孩子)。
8、最后,当插入S时,含有N,P,Q,R的结点需要分裂,把中间元素Q上移到父节点中,但是情况来了,父节点中空间已经满了,所以也要进行分裂,将父节点中的中间元素M上移到新形成的根结点中,注意以前在父节点中的第三个指针在修改后包括D和G节点中。这样具体插入操作的完成,下面介绍删除操作,删除操作相对于插入操作要考虑的情况多点。
删除(delete)操作:
首先查找B树中需删除的元素,如果该元素在B树中存在,则将该元素在其结点中进行删除,如果删除该元素后,首先判断该元素是否有左右孩子结点,如果有,则上移孩子结点中的某相近元素(“左孩子最右边的节点”或“右孩子最左边的节点”)到父节点中,然后是移动之后的情况;如果没有,直接删除后,移动之后的情况。
以上述插入操作构造的一棵5阶B树(树中最多含有m(m=5)个孩子,因此关键字数最小为ceil(m / 2)-1=2。还是这句话,关键字数小了(小于2个)就合并,大了(超过4个)就分裂)为例
,依次删除H,T,R,E。
1、首先删除元素H,当然首先查找H,H在一个叶子结点中,且该叶子结点元素数目3大于最小元素数目ceil(m/2)-1=2,则操作很简单,咱们只需要移动K至原来H的位置,移动L至K的位置(也就是结点中删除元素后面的元素向前移动)
2、下一步,删除T,因为T没有在叶子结点中,而是在中间结点中找到,咱们发现他的继承者W(字母升序的下个元素),将W上移到T的位置,然后将原包含W的孩子结点中的W进行删除,这里恰好删除W后,该孩子结点中元素个数大于2,无需进行合并操作。
3、下一步删除R,R在叶子结点中,但是该结点中元素数目为2,删除导致只有1个元素,已经小于最小元素数目ceil(5/2)-1=2,而由前面我们已经知道:如果其某个相邻兄弟结点中比较丰满(元素个数大于ceil(5/2)-1=2),则可以向父结点借一个元素,然后将最丰满的相邻兄弟结点中上移最后或最前一个元素到父节点中(有没有看到红黑树中左旋操作的影子?),在这个实例中,右相邻兄弟结点中比较丰满(3个元素大于2),所以先向父节点借一个元素W下移到该叶子结点中,代替原来S的位置,S前移;然后X在相邻右兄弟结点中上移到父结点中,最后在相邻右兄弟结点中删除X,后面元素前移
4、最后一步删除E, 删除后会导致很多问题,因为E所在的结点数目刚好达标,刚好满足最小元素个数(ceil(5/2)-1=2),而相邻的兄弟结点也是同样的情况,删除一个元素都不能满足条件,所以需要该节点与某相邻兄弟结点进行合并操作;首先移动父结点中的元素(该元素在两个需要合并的两个结点元素之间)下移到其子结点中,然后将这两个结点进行合并成一个结点。所以在该实例中,咱们首先将父节点中的元素D下移到已经删除E而只有F的结点中,然后将含有D和F的结点和含有A,C的相邻兄弟结点进行合并成一个结点。
5、也许你认为这样删除操作已经结束了,其实不然,在看看上图,对于这种特殊情况,你立即会发现父节点只包含一个元素G,没达标(因为非根节点包括叶子结点的关键字数n必须满足于2=<n<=4,而此处的n=1),这是不能够接受的。如果这个问题结点的相邻兄弟比较丰满,则可以向父结点借一个元素。假设这时右兄弟结点(含有Q,X)有一个以上的元素(Q右边还有元素),然后咱们将M下移到元素很少的子结点中,将Q上移到M的位置,这时,Q的左子树将变成M的右子树,也就是含有N,P结点被依附在M的右指针上。所以在这个实例中,咱们没有办法去借一个元素,只能与兄弟结点进行合并成一个结点,而根结点中的唯一元素M下移到子结点,这样,树的高度减少一层。
B+树
B+树的定义
B+树是B树的一种变形,它更适合实际应用中操作系统的文件索引和数据库索引。
-
除根节点外的内部节点,每个节点最多有
m
个关键字,最少有ceil[m/2]
个关键字。 -
根节点要么没有子树,要么至少有2棵子树;
-
所有的叶子节点包含了全部的关键字以及这些关键字指向文件的指针,并且:
3.1所有叶子节点中的关键字按大小顺序排列
3.2 相邻的叶子节点顺序链接(相当于是构成了一个顺序链表)
3.3 所有叶子节点在同一层 -
所有分支节点的关键字都是对应子树中关键字的最大值
下图就是一个非常典型的B+树的例子。
B+树和B树相比,主要的不同点在以下3项
- 内部节点中,关键字的个数与其子树的个数相同,不像B树种,子树的个数总比关键字个数多1个
- 所有指向文件的关键字及其指针都在叶子节点中,不像B树,有的指向文件的关键字是在内部节点中。换句话说,B+树中,内部节点仅仅起到索引的作用,
- 在搜索过程中,如果查询和内部节点的关键字一致,那么搜索过程不停止,而是继续向下搜索这个分支。
B+树相比于B树,在文件系统,数据库系统当中,更有优势,原因如下:
-
B+树的磁盘读写代价更低
B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说I/O读写次数也就降低了。 -
B+树的查询效率更加稳定
由于内部结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。 -
B+树更有利于对数据库的扫描
B树在提高了磁盘