矩阵快速幂模板+例题(快速入门)

矩阵快速幂模板+例题(快速入门)

本来早在一个月前就应该把这给掌握的,硬是得等到卡题了,才想到来补知识

文章目录

模板

传送门:矩阵快速幂基础讲解

单纯的求某一矩阵的快速幂是没有什么意义的,主要是由于所求的递推式的数比较大时,如果使用暴力递推,必定会超时,这时矩阵快速幂的作用就完美体现了

根据个人码风和编码习惯,敲了一份模板,如果觉得有用,大佬们不妨留个赞呗(手动滑稽)

/*
 *  矩阵快速幂 n*n矩阵的x次幂
 */
#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define mod 9973
using namespace std;
int n,x;
const int maxn=15;
struct mat{
    ll m[maxn][maxn];
    mat(){
        memset(m,0,sizeof(m));
    }
    //重载矩阵乘法
    mat operator * (const mat b)const{
        mat ans;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                for(int k=1;k<=n;k++){
                    ans.m[i][j]+=m[i][k]*b.m[k][j];
                    ans.m[i][j]%=mod;
                }
            }
        }
        return ans;
    }
};
//矩阵快速幂
mat pow_mat(mat a,int b){
mat ans;
//初始化为单位矩阵
    for(int i=1;i<=n;i++){
        ans.m[i][i]=1;
    }
    while(b){
        if(b&1){
            ans=ans*a;
        }
        a=a*a;
        b>>=1;
    }
    return ans;
}
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&x);
        mat a;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                scanf("%lld",&a.m[i][j]);
            }
        }
        a=pow_mat(a,x);
        //输出矩阵
        /*
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                cout<<a.m[i][j]<<" ";
            }
            cout<<endl;
        }*/
        ll sum=0;
        for(int i=1;i<=n;i++){
            sum=(sum+a.m[i][i])%mod;
        }
        printf("%lld\n",sum);
    }
    return 0;
}

例题

一、HDU 1575:Tr A

题目链接

题目大意:
题意也是很简单,毕竟是模板题嘛;求某一矩阵a的k次幂,之后求矩阵对角线的和取模

代码:
刚刚我的模板恰好是解决这一题的完整代码

二、POJ 3070:Fibonacci

题目链接

题目大意:
求最经典的斐波拉契数列f[n],但由于n比较大,如果我们直接使用递归的话会超时,但是我们选择用数组存的话,内存肯定会超限(因为n过于大)

这时就得想到矩阵快速幂了
在这里插入图片描述
代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstring>
#define inf 0x3f3f3f3f
#define mod 10000
#define ll long long
using namespace std;
const double eps=1e-6;
const int maxn=5;
ll n,x;
struct mat{
    ll m[maxn][maxn];
    mat(){
        memset(m,0,sizeof(m));
    }
    mat operator * (const mat b)const{
        mat ans;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                for(int k=1;k<=n;k++){
                    ans.m[i][j]+=m[i][k]*b.m[k][j];
                    ans.m[i][j]%=mod;
                }
            }
        }
        return ans;
    }
};
mat pow_mat(mat a,int b){
    mat ans;
    for(int i=1;i<=n;i++){
        ans.m[i][i]=1;
    }
    while(b){
        if(b&1){
            ans=ans*a;
        }
        a=a*a;
        b>>=1;
    }
    return ans;
}
int main(){
    n=2;
    while(~scanf("%lld",&x)){
        if(x==-1)
            break;
        mat a;
        a.m[1][1]=1,a.m[1][2]=1;
        a.m[2][1]=1,a.m[2][2]=0;
        a=pow_mat(a,x);
        printf("%lld\n",a.m[1][2]);
    }
    return 0;
}

三、HNUCM 1620: Fy’s dota2

题目链接

题目大意:
很明显能够得到递推公式:
在这里插入图片描述
由于所求的数列下标比较大,于是用到快速幂,构造矩阵
在这里插入图片描述
代码:

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define mod 7777777
#define ll long long
using namespace std;
const double eps=1e-6;
const int maxn=15;
int n,x;
struct mat{
    ll m[maxn][maxn];
    mat(){
        memset(m,0,sizeof(m));
    }
    //重载矩阵乘法
    mat operator * (const mat b)const{
        mat ans;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                for(int k=1;k<=n;k++){
                    ans.m[i][j]+=m[i][k]*b.m[k][j];
                    ans.m[i][j]%=mod;
                }
            }
        }
        return ans;
    }
};
//矩阵快速幂
mat pow_mat(mat a,int b){
    mat ans;
    for(int i=1;i<=n;i++){
        ans.m[1][i]=pow(2,n-i);
    }
    while(b){
        if(b&1){
            ans=ans*a;
        }
        a=a*a;
        b>>=1;
    }
    return ans;
}
int main(){
    scanf("%d%d",&n,&x);
    if(n>=x){
        printf("%d\n",(int)pow(2,x-1));
    }
    else{
        mat a;
        for(int i=1;i<=n;i++){
            a.m[i][1]=1;
            a.m[i][i+1]=1;
        }
        a=pow_mat(a,x-n);
        printf("%lld\n",a.m[1][1]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值