矩阵快速幂模板+例题(快速入门)
本来早在一个月前就应该把这给掌握的,硬是得等到卡题了,才想到来补知识
模板
单纯的求某一矩阵的快速幂是没有什么意义的,主要是由于所求的递推式的数比较大时,如果使用暴力递推,必定会超时,这时矩阵快速幂的作用就完美体现了
根据个人码风和编码习惯,敲了一份模板,如果觉得有用,大佬们不妨留个赞呗(手动滑稽)
/*
* 矩阵快速幂 n*n矩阵的x次幂
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define mod 9973
using namespace std;
int n,x;
const int maxn=15;
struct mat{
ll m[maxn][maxn];
mat(){
memset(m,0,sizeof(m));
}
//重载矩阵乘法
mat operator * (const mat b)const{
mat ans;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
ans.m[i][j]+=m[i][k]*b.m[k][j];
ans.m[i][j]%=mod;
}
}
}
return ans;
}
};
//矩阵快速幂
mat pow_mat(mat a,int b){
mat ans;
//初始化为单位矩阵
for(int i=1;i<=n;i++){
ans.m[i][i]=1;
}
while(b){
if(b&1){
ans=ans*a;
}
a=a*a;
b>>=1;
}
return ans;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&x);
mat a;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%lld",&a.m[i][j]);
}
}
a=pow_mat(a,x);
//输出矩阵
/*
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cout<<a.m[i][j]<<" ";
}
cout<<endl;
}*/
ll sum=0;
for(int i=1;i<=n;i++){
sum=(sum+a.m[i][i])%mod;
}
printf("%lld\n",sum);
}
return 0;
}
例题
一、HDU 1575:Tr A
题目大意:
题意也是很简单,毕竟是模板题嘛;求某一矩阵a的k次幂,之后求矩阵对角线的和取模
代码:
刚刚我的模板恰好是解决这一题的完整代码
二、POJ 3070:Fibonacci
题目大意:
求最经典的斐波拉契数列f[n],但由于n比较大,如果我们直接使用递归的话会超时,但是我们选择用数组存的话,内存肯定会超限(因为n过于大)
这时就得想到矩阵快速幂了
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstring>
#define inf 0x3f3f3f3f
#define mod 10000
#define ll long long
using namespace std;
const double eps=1e-6;
const int maxn=5;
ll n,x;
struct mat{
ll m[maxn][maxn];
mat(){
memset(m,0,sizeof(m));
}
mat operator * (const mat b)const{
mat ans;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
ans.m[i][j]+=m[i][k]*b.m[k][j];
ans.m[i][j]%=mod;
}
}
}
return ans;
}
};
mat pow_mat(mat a,int b){
mat ans;
for(int i=1;i<=n;i++){
ans.m[i][i]=1;
}
while(b){
if(b&1){
ans=ans*a;
}
a=a*a;
b>>=1;
}
return ans;
}
int main(){
n=2;
while(~scanf("%lld",&x)){
if(x==-1)
break;
mat a;
a.m[1][1]=1,a.m[1][2]=1;
a.m[2][1]=1,a.m[2][2]=0;
a=pow_mat(a,x);
printf("%lld\n",a.m[1][2]);
}
return 0;
}
三、HNUCM 1620: Fy’s dota2
题目大意:
很明显能够得到递推公式:
由于所求的数列下标比较大,于是用到快速幂,构造矩阵
代码:
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define mod 7777777
#define ll long long
using namespace std;
const double eps=1e-6;
const int maxn=15;
int n,x;
struct mat{
ll m[maxn][maxn];
mat(){
memset(m,0,sizeof(m));
}
//重载矩阵乘法
mat operator * (const mat b)const{
mat ans;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
ans.m[i][j]+=m[i][k]*b.m[k][j];
ans.m[i][j]%=mod;
}
}
}
return ans;
}
};
//矩阵快速幂
mat pow_mat(mat a,int b){
mat ans;
for(int i=1;i<=n;i++){
ans.m[1][i]=pow(2,n-i);
}
while(b){
if(b&1){
ans=ans*a;
}
a=a*a;
b>>=1;
}
return ans;
}
int main(){
scanf("%d%d",&n,&x);
if(n>=x){
printf("%d\n",(int)pow(2,x-1));
}
else{
mat a;
for(int i=1;i<=n;i++){
a.m[i][1]=1;
a.m[i][i+1]=1;
}
a=pow_mat(a,x-n);
printf("%lld\n",a.m[1][1]);
}
return 0;
}