按 特定区域/指定位置 批量裁剪图片

除Photoshop以外,发现一款个人觉得比Photoshop更好用的批量裁剪图片的工具,尤其是针对想指定固定位置和区域的需求来说 使用IRFANVIEW批量裁剪 很好用。
IRFANVIEW支持的功能很多,可以批量转换格式、批量重命名、JPG无损旋转、调整图像大小、调整颜色深度、添加覆盖文字水印、特效(内置)处理等图像编辑功能。
主要是因为我想裁剪一批指定区域(而不只是指定尺寸大小)的图片,所以也是经过了一番寻找,看到网上有关此工具的使用,经实践,确实不错。

IRFANVIEW下载链接:https://www.irfanview.com/

汉化教程:下载中文补丁:https://www.irfanview.com/languages.htm
该中文补丁解压后丢在安装目录 C:\Program Files\IrfanView\Languages 内即可

批量裁剪图片操作步骤说明:
1、点击“文件”——“批量转换/重命名”菜单
在这里插入图片描述2、选择需要处理的文件:
打开需要处理的图片文件夹,选择需要处理的图片,点击添加/添加全部 按钮,将图片添加到右下方
在这里插入图片描述
在这里插入图片描述

3、选择高级
在这里插入图片描述
4、高级设置窗口中定义要裁剪的区域,定义好之后点击OK按钮

在这里插入图片描述

区域坐标可以用PS信息窗口或者别的图片处理都可以查看
首先确定想要裁剪的区域
在这里插入图片描述

通过其他工具查看裁剪具体坐标位置
在这里插入图片描述

并查看图片原来尺寸
在这里插入图片描述

5、设置裁剪后图片的存放位置
在这里插入图片描述

6、设定好后,点开始批量处理的按钮,即可立马执行批量裁剪的操作
在这里插入图片描述
经测试,几千张图片也可以几分钟内完成。
7、查看处理结果
在这里插入图片描述

<think>好的,我需要分析用户提供的函数`void DetectRoadLine(Mat src, Mat& ROI)`的功能。首先,我会通读代码,理解各个步骤的作用。 首先,函数接受两个参数:`src`和`ROI`,都是OpenCV的Mat类型。从命名来看,`src`可能是原始图像,`ROI`是感兴趣区域(Region of Interest)。函数的目标是检测车道线并在`src`上绘制出来。 接下来,函数将`ROI`转换为灰度图像`gray`,然后进行二值化处理,阈值设为180,高于这个值的像素设为255(白色),低于的设为0(黑色)。这一步可能是为了突出车道线,假设车道线在较亮区域。 然后,函数定义了两个点集`left_line`和`right_line`,分别用于存储左右车道线的点。接下来的循环遍历图像的左半部分(列数从0到中间)和右半部分(列数从中间到末尾),行数从中间到底部。在循环中,如果某个像素的值为255(即车道线),就将该点的坐标添加到对应的点集中。 这里可能存在一个问题:循环的顺序是否正确?例如,左车道线的遍历是从左半部分列,从中间行到底部行,而右车道线则是右半部分列同样范围的行。这样的设计是否合理?车道线通常是从近处延伸至远处,可能应该从图像底部开始检测,这里从中间行开始可能只检测图像下半部分的车道线,可能是为了排除远处的干扰。 接着,当左右车道线都有点时,函数提取四个关键点:`B_L`(左车道线底部)、`T_L`(左车道线顶部)、`T_R`(右车道线顶部)、`B_R`(右车道线底部)。这里可能存在命名混淆,因为按代码中的索引,`left_line[0]`是左半部分列、中间行的第一个点,可能对应图像中左车道线的底部,而`left_line`的最后一个点可能是左车道线的顶部?同样,`right_line[0]`是右半部分列、中间行的第一个点,可能对应右车道线的顶部,而`right_line`的最后一个点可能是右车道线的底部。这可能需要确认点的坐标顺序是否正确。 然后,函数在`src`图像上绘制四个不同颜色的圆点,并用绿色线条连接左右车道线的底部和顶部。最后,使用`fillPoly`填充这四个点形成的区域,颜色为浅蓝色(Scalar(133, 230, 238))。这里可能是在标记车道区域,例如自动驾驶中的可行区域。 但存在几个疑问:首先,左右车道线的点收集是否正确?例如,左车道线的循环是从左半部分的列,但车道线可能在右半部分也可能存在,或者反之。其次,提取的四个点是否准确代表车道的边界?此外,使用中间行作为起点是否会导致检测不完整? 可能的改进点:使用更精确的车道线检测算法,如霍夫变换、滑动窗口法或深度学习模型。此外,循环遍历所有像素可能效率较低,可以考虑优化,比如只在特定区域搜索,或者使用边缘检测后再进行筛选。 总结,该函数的功能是检测图像中的车道线,并在原始图像上绘制车道线和填充车道区域,可能用于辅助驾驶或车道偏离预警系统。但现有方法较为简单,可能受光照、车道线模糊等因素影响较大。</think>以下是对 `DetectRoadLine` 函数的逐层解析: --- ### **功能概述** 这是一个基于阈值分割的 **车道线检测与标注函数**,核心功能为: 1. 在 `ROI`(感兴趣区域)中检测左右车道线 2. 在原始图像 `src` 上绘制车道线轮廓并填充车道区域 --- ### **代码执行流程** #### **1. 预处理阶段** ```cpp Mat gray; cvtColor(ROI, gray, COLOR_BGR2GRAY); // 转换为灰度图 Mat thresh; threshold(gray, thresh, 180, 255, THRESH_BINARY); // 二值化(阈值180) ``` - **目的**:通过高阈值(180)提取明亮区域(车道线通常为白色/黄色) - **效果**:车道线变为白色(255),背景为黑色(0) --- #### **2. 车道线点集采集** ```cpp vector<Point> left_line, right_line; // 左车道线检测范围:左半图像,行从中间到底部 for (int i = 0; i < thresh.cols / 2; i++) { // 列循环(左半) for (int j = thresh.rows / 2; j < thresh.rows; j++) { // 行循环(下半) if (thresh.at<uchar>(j, i) == 255) { left_line.push_back(Point(i, j)); } } } // 右车道线检测范围:右半图像,行从中间到底部 for (int i = thresh.cols / 2; i < thresh.cols; i++) { // 列循环(右半) for (int j = thresh.rows / 2; j < thresh.rows; j++) { // 行循环(下半) if (thresh.at<uchar>(j, i) == 255) { right_line.push_back(Point(i, j)); } } } ``` - **逻辑**: - 仅检测图像 **下半部分**(`j` 从 `rows/2` 开始),因车道线在近处更清晰 - 左右车道线分别在图像左右半区搜索 - **潜在问题**: - 若车道线跨越左右半区(如弯道),检测会失败 - 未过滤噪声点(如反光、路面标记) --- #### **3. 车道线标注与填充** ```cpp if (left_line.size() > 0 && right_line.size() > 0) { // 提取关键点 Point B_L = left_line[0]; // 左车道线最下方点(j最大) Point T_L = left_line.back(); // 左车道线最上方点(j最小) Point T_R = right_line[0]; // 右车道线最上方点(j最小) Point B_R = right_line.back(); // 右车道线最下方点(j最大) // 绘制彩色圆心(可视化关键点) circle(src, B_L, 10, Scalar(0,0,255), -1); // 红色:左底部 circle(src, T_L, 10, Scalar(0,255,0), -1); // 绿色:左顶部 circle(src, T_R, 10, Scalar(255,0,0), -1); // 蓝色:右顶部 circle(src, B_R, 10, Scalar(0,255,255), -1); // 黄色:右底部 // 绘制车道线边界 line(src, B_L, T_L, Scalar(0,255,0), 10); // 左车道线(绿色) line(src, T_R, B_R, Scalar(0,255,0), 10); // 右车道线(绿色) // 填充车道区域 vector<Point> pts = {B_L, T_L, T_R, B_R}; vector<vector<Point>> ppts = {pts}; fillPoly(src, ppts, Scalar(133,230,238)); // 浅蓝色填充 } ``` - **标注逻辑**: - 假设 `left_line` 和 `right_line` 的点按行坐标升序排列 - 通过首尾点确定车道线的顶部和底部边界 - **效果**:在原始图像上形成梯形填充区域(模拟车道区域) --- ### **关键限制与问题** 1. **检测假设过强** - 仅适用于 **直道** 且车道线严格分布在左右半区 - 弯道或倾斜车道线会导致检测失败 2. **点集排序依赖** - 代码假设 `left_line` 和 `right_line` 的点按行坐标排序(`j` 值从小到大) - 若点集未排序,`T_L`/`B_L` 等关键点提取将错误 3. **噪声敏感** - 二值化后的孤立白点(非车道线)会被错误收录 - 未使用滤波或形态学操作去噪 4. **效率问题** - 遍历所有像素点效率低,实际工程中需优化(如滑动窗口法) --- ### **改进建议** 1. **增强鲁棒性** - 改用 **霍夫变换** 或 **滑动窗口+多项式拟合** 检测车道线 - 示例代码: ```cpp // 使用霍夫变换检测直线 vector<Vec4i> lines; HoughLinesP(thresh, lines, 1, CV_PI/180, 50, 50, 10); ``` 2. **引入曲线拟合** - 对点集进行二次曲线拟合,适应弯道场景 - 示例代码: ```cpp Mat coeff_left = polyfit(left_line, 2); // 二次多项式拟合 ``` 3. **动态阈值处理** - 使用自适应阈值(如 `adaptiveThreshold`)替代固定阈值 4. **区域掩膜优化** - 结合透视变换,将 ROI 限制在车辆正前方梯形区域 --- ### **典型应用场景** 1. **车道保持辅助系统(LKAS)** - 实时标注车道线,提醒驾驶员偏离车道 2. **自动驾驶感知模块** - 提供车道区域信息,用于路径规划 3. **行车记录仪分析** - 标注视频中的车道线,辅助事故分析 --- ### **总结** - **核心功能**:通过二值化提取车道线点集,绘制边界并填充车道区域 - **适用场景**:简单直道环境下的车道线可视化 - **改进方向**:增强弯道适应性、抗噪声能力、检测效率
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值