MATLAB第一次作业
题目:
解答:
1,代码:
clear;clc;
x=1;y=2;
a=sqrt(4*x^2+1);
b=0.5457*exp(1)^(-0.75*x^2-3.75*y^2-1.5*x);
c=2*sin(3*y)-1;
z=(a+b)/c;
str=['当x=1,y=2时z的值为:',num2str(z)];
disp(str)
运行结果:
当x=1,y=2时z的值为:-1.4345
2、代码:
clear;clc;
syms x;
x=((-1+sqrt(-1))/4);
y=x+8+10*1i;
str=['计算后值为:',num2str(y)];
disp(str)
运行结果:
计算后值为:7.75+10.25i
3、代码:
clear;clc;
disp('她是我们班最好的学生')
运行结果:
她是我们班最好的学生
4、代码:
clear;clc;
A=[1 2 3;-2 1 3;-3 2 1];
B=[1 4 3;3 2 8;5 2 3];
C=(A==B);
D=(A<0);
[a,b]=find(C==1);
disp('两矩阵中元素相等的位置为如下:')
disp([a,b])
[c,d]=find(C==0);
disp('两矩阵中元素不相等的位置如下:')
disp([c,d])
e=D.*A;
disp('矩阵 A 中所有小于 0 的元素标识如下:')
disp(e)
运行结果:
两矩阵中元素相等的位置为如下:
1 1
3 2
1 3
两矩阵中元素不相等的位置如下:
2 1
3 1
1 2
2 2
2 3
3 3
矩阵 A 中所有小于 0 的元素标识如下:
0 0 0
-2 0 0
-3 0 0
5、代码:
clear;clc;
A=[1 2 3;-2 1 3;-3 2 1];
B=[1 4 3;3 2 8;5 2 3];
[x,y]=find((B>2)&(B<5));
b=A|B;
c=A&B;
disp('AB两矩阵进行”或“运算后的结果为:')
disp(b)
disp('AB两矩阵进行“与”运算后的结果为:')
disp(c)
disp('B矩阵中元素在2和5之间的元素位置如下:')
disp([x,y])
运行结果:
AB两矩阵进行”或“运算后的结果为:
1 1 1
1 1 1
1 1 1
AB两矩阵进行“与”运算后的结果为:
1 1 1
1 1 1
1 1 1
B矩阵中元素在2和5之间的元素位置如下:
2 1
1 2
1 3
3 3
6、代码:
clear;clc;
f=[1 -1 2 1 0 3];
g=[1 0 1 1 -1];
a=real(roots(f));
b=real(roots(g));
syms x
m=x-a;
n=x-b;
disp('对f(x)进行因式分解得到结果如下:')
disp(m)
disp('对g(x)进行因式分解得到结果如下:')
disp(n)
运行结果:
对f(x)进行因式分解得到结果如下:
x - 7817285878586419/9007199254740992
x - 7817285878586419/9007199254740992
x + 1
x - 594956688077289/4503599627370496
x - 594956688077289/4503599627370496
对g(x)进行因式分解得到结果如下:
x - 7749068420683827/36028797018963968
x - 7749068420683827/36028797018963968
x + 1
x - 5132665044399055/9007199254740992
7、代码:
clear;clc;
syms a b x c
y=sin((a+b)^2*x+c);
m=int(y,c);
disp('对变量c进行积分结果为:')
disp(m)
n=int(y,x,pi/2,pi);
disp('积分域为x从pi/2到pi的积分结果为:')
disp(n)
运行结果:
对变量c进行积分结果为:
-cos(c + x*(a + b)^2)
积分域为x从pi/2到pi的积分结果为:
-(cos(c + pi*(a + b)^2) - cos(c + (pi*(a + b)^2)/2))/(a + b)^2
8、代码:
clear;clc;
syms a b x n
F=[cos(a*x) sin((a+b)^2*x);-sin(b*x) exp(1)^n];
m=diff(F);
n=diff(diff(F,'a'));
disp('矩阵F对变量x的一阶微分为:')
disp(m)
disp('矩阵F对变量a的二阶微分为:')
disp(n)
运行结果:
矩阵F对变量x的一阶微分为:
[-a*sin(a*x), cos(x*(a + b)^2)*(a + b)^2]
[-b*cos(b*x), 0]
矩阵F对变量a的二阶微分为:
[- sin(a*x) - a*x*cos(a*x), cos(x*(a + b)^2)*(2*a + 2*b) - x*sin(x*(a + b)^2)*(a + b)^2*(2*a + 2*b)]
[ 0, 0]
9、代码:
clear;clc
[x,y]=dsolve('Df==f+g','Dg==-f+g','f(0)=2,g(2)=5');
disp('微分方程组在初始条件f(0)=2,g(2)=5下的解为:')
disp('x=')
disp(x)
disp('y=')
disp(y)
运行结果:
微分方程组在初始条件f(0)=2,g(2)=5下的解为:
x=
2*exp(t)*cos(t) + (exp(-2)*exp(t)*sin(t)*(2*exp(2)*sin(2) + 5))/cos(2)
y=
(exp(-2)*exp(t)*cos(t)*(2*exp(2)*sin(2) + 5))/cos(2) - 2*exp(t)*sin(t)