MATLAB第一次作业(MATLAB基础与应用(第三版))

MATLAB第一次作业

题目:

解答:

1,代码:

clear;clc;
x=1;y=2;
a=sqrt(4*x^2+1);
b=0.5457*exp(1)^(-0.75*x^2-3.75*y^2-1.5*x);
c=2*sin(3*y)-1;
z=(a+b)/c;
str=['当x=1,y=2时z的值为:',num2str(z)];
disp(str)

运行结果:

当x=1,y=2时z的值为:-1.4345

2、代码:

clear;clc;
syms x;
x=((-1+sqrt(-1))/4);
y=x+8+10*1i;
str=['计算后值为:',num2str(y)];
disp(str)

运行结果:

计算后值为:7.75+10.25i

3、代码:

clear;clc;
disp('她是我们班最好的学生')

运行结果:

她是我们班最好的学生

4、代码:

clear;clc;
A=[1 2 3;-2 1 3;-3 2 1];
B=[1 4 3;3 2 8;5 2 3];
C=(A==B);
D=(A<0);
[a,b]=find(C==1);
disp('两矩阵中元素相等的位置为如下:')
disp([a,b])
[c,d]=find(C==0);
disp('两矩阵中元素不相等的位置如下:')
disp([c,d])
e=D.*A;
disp('矩阵 A 中所有小于 0 的元素标识如下:')
disp(e)

运行结果:

两矩阵中元素相等的位置为如下:
     1     1
     3     2
     1     3

两矩阵中元素不相等的位置如下:
     2     1
     3     1
     1     2
     2     2
     2     3
     3     3

矩阵 A 中所有小于 0 的元素标识如下:
     0     0     0
    -2     0     0
    -3     0     0

5、代码:

clear;clc;
A=[1 2 3;-2 1 3;-3 2 1];
B=[1 4 3;3 2 8;5 2 3];
[x,y]=find((B>2)&(B<5));
b=A|B;
c=A&B;
disp('AB两矩阵进行”或“运算后的结果为:')
disp(b)
disp('AB两矩阵进行“与”运算后的结果为:')
disp(c)
disp('B矩阵中元素在2和5之间的元素位置如下:')
disp([x,y])

运行结果:

AB两矩阵进行”或“运算后的结果为:
   1   1   1
   1   1   1
   1   1   1

AB两矩阵进行“与”运算后的结果为:
   1   1   1
   1   1   1
   1   1   1

B矩阵中元素在2和5之间的元素位置如下:
     2     1
     1     2
     1     3
     3     3

6、代码:

clear;clc;
f=[1 -1 2 1 0 3];
g=[1 0 1 1 -1];
a=real(roots(f));
b=real(roots(g));
syms x
m=x-a;
n=x-b;
disp('对f(x)进行因式分解得到结果如下:')
disp(m)
disp('对g(x)进行因式分解得到结果如下:')
disp(n)

运行结果:

对f(x)进行因式分解得到结果如下:
x - 7817285878586419/9007199254740992
x - 7817285878586419/9007199254740992
                                x + 1
 x - 594956688077289/4503599627370496
 x - 594956688077289/4503599627370496
 
对g(x)进行因式分解得到结果如下:
x - 7749068420683827/36028797018963968
x - 7749068420683827/36028797018963968
                                 x + 1
 x - 5132665044399055/9007199254740992

7、代码:

clear;clc;
syms a b x c
y=sin((a+b)^2*x+c);
m=int(y,c);
disp('对变量c进行积分结果为:')
disp(m)
n=int(y,x,pi/2,pi);
disp('积分域为x从pi/2到pi的积分结果为:')
disp(n)

运行结果:

对变量c进行积分结果为:
-cos(c + x*(a + b)^2)
 
积分域为x从pi/2到pi的积分结果为:
-(cos(c + pi*(a + b)^2) - cos(c + (pi*(a + b)^2)/2))/(a + b)^2

8、代码:

clear;clc;
syms a b x n
F=[cos(a*x) sin((a+b)^2*x);-sin(b*x) exp(1)^n];
m=diff(F);
n=diff(diff(F,'a'));
disp('矩阵F对变量x的一阶微分为:')
disp(m)
disp('矩阵F对变量a的二阶微分为:')
disp(n)

运行结果:

矩阵F对变量x的一阶微分为:
[-a*sin(a*x), cos(x*(a + b)^2)*(a + b)^2]
[-b*cos(b*x),                          0]
 
矩阵F对变量a的二阶微分为:
[- sin(a*x) - a*x*cos(a*x), cos(x*(a + b)^2)*(2*a + 2*b) - x*sin(x*(a + b)^2)*(a + b)^2*(2*a + 2*b)]
[                        0,                                                                       0]

9、代码:

clear;clc
[x,y]=dsolve('Df==f+g','Dg==-f+g','f(0)=2,g(2)=5');
disp('微分方程组在初始条件f(0)=2,g(2)=5下的解为:')
disp('x=')
disp(x)
disp('y=')
disp(y)

运行结果:

微分方程组在初始条件f(0)=2,g(2)=5下的解为:
x=
2*exp(t)*cos(t) + (exp(-2)*exp(t)*sin(t)*(2*exp(2)*sin(2) + 5))/cos(2)
 
y=
(exp(-2)*exp(t)*cos(t)*(2*exp(2)*sin(2) + 5))/cos(2) - 2*exp(t)*sin(t)

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值