卡方检验.医学统计实例详解

卡方检验是一种常用的假设检验方法,通常用于分析两个或多个分类变量之间的关系。在医学研究中,卡方检验被广泛应用于分析两种或多种治疗方法的疗效,或者分析某种疾病的发病率与某些危险因素之间的关系。下面我们来看一个卡方检验在医学实例中的应用。
假设我们有一组数据,记录了某种癌症的患病情况和年龄分布。数据如下表所示:

年龄段患病人数未患病人数合计
20-393565100
40-5965135200
60-7955145200
80以上4555100
合计200400600

我们的研究假设是,年龄与患癌症的发生率之间存在关系。具体而言,我们想知道,不同年龄段的人群中,患癌症的人数是否与预期相符,还是存在显著差异。
为了回答这个问题,我们需要进行卡方检验。具体步骤如下:
建立假设:我们需要建立一个原假设和一个备择假设。原假设是指不同年龄段的人群中,患癌症的人数符合预期的分布。备择假设是指不同年龄段的人群中,患癌症的人数存在显著差异。

一、基本公式法

实际频数A,理论频数T,Trc=行合计*列合计/总例数。

卡方值=∑((A-T)^2/T),自由度=(R-1)*(C-1)。

1.计算期望值:

例如:100*200/600=33.3333

年龄段患病人数期望值未患病人数期望值
20-3933.333366.6667
40-5966.6667133.3333
60-7966.6667133.3333
80以上33.333366.6667

2.计算卡方值:

卡方值 =∑((A-T)^2/T)= Σ(观察值 – 期望值)^2 / 期望值

例如: (35-33.3333)^2/33.3333=0.0833

年龄段患病人数(A-T)^2 /T未患病人数(A-T)^2 /T
20-390.08330.0417
40-590.04170.0208
60-792.04171.0208
80以上4.08342.0417

卡方值=0.0833+0.0417+0.0417+0.0208+2.0417+1.0208+4.0834+2.0417=9.3751

自由度=(4-1)*(2-1)=3

查卡方临界值表,根据卡方值和自由度可以查找到对应的临界值和p值。在本例中,自由度为3,显著性水平设为0.05。查表可得,卡方临界值为7.81,因为卡方值(9.3751)大于临界值(7.81),所以p值小于显著性水平0.05,所以可以拒绝原假设,接受备择假设,认为不同年龄段的人群中,患癌症的人数存在显著差异。

二、行×列专用公式法

计算公式:

自由度=(4-1)*(2-1)=3

结论同基本公式法。

(卡方检验.医学统计实例详解 - 天兰统计-医学统计助手★卡方检验,t检验,F检验,秩和检验,方差分析)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值