ai相关
文章平均质量分 70
booljin
10 多年游戏后端主程,目前栖身于机器视觉行业,当前兴趣是 ai 相关内容
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
一个 c++版本的 yolo 部署 (四)-- 基于cuda的预处理
本文详细介绍了图像预处理中的仿射变换和双线性插值算法。首先通过仿射变换实现图像的缩放和平移操作,利用齐次坐标将非线性变换转化为矩阵运算。然后阐述了双线性插值算法的原理,即通过目标网格在原图坐标中的四个邻点加权计算颜色值,并指出该算法天然适合并行计算。最后给出了基于CUDA的预处理代码实现,展示了如何利用GPU加速图像缩放、归一化和通道转换等操作。整个预处理过程包括计算逆变换矩阵、确定目标像素在原图的位置、进行加权颜色计算等步骤。原创 2025-07-02 18:00:00 · 1628 阅读 · 0 评论 -
一个 c++版本的 yolo 部署 (三)-- 基于opencv的cpu版预处理和分割后处理
本文摘要:介绍基于OpenCV的YOLO模型预处理与分割后处理实现方法。预处理包含图像缩放(保持长宽比)和通道转置归一化,将输入图像转换为CHW格式的float数组。后处理包括置信度过滤、NMS非极大值抑制、以及mask解码生成过程,最终输出目标检测框和对应的分割mask。关键参数包括置信度阈值0.3、NMS阈值0.5和mask阈值0.5,处理流程完整覆盖了从模型输入到结果输出的全过程。原创 2025-06-11 16:03:22 · 381 阅读 · 0 评论 -
一个 c++版本的 yolo 部署 (二)
YOLO模型简介与应用 本文介绍了YOLO模型的三种主要任务类型:分类(Classify)、检测(Detect)和分割(Segment)。分类任务输出各类别概率;检测任务提供目标位置和类别信息;分割任务通过权重和掩码精确提取物体轮廓。文章重点讲解了输入数据的预处理过程,包括HWC到CHW的格式转换和归一化处理,为后续基于OpenCV的实际应用处理打下基础。作为AI引擎,理解YOLO模型的输入输出结构是正确使用模型的关键。原创 2025-06-10 22:28:29 · 576 阅读 · 0 评论 -
一个 c++版本的 yolo 部署 (一)
C++版YOLO部署优化实践 项目起因于团队成员在YOLO模型部署中遇到性能瓶颈(700-800ms/i9+3070Ti),经分析发现前/后处理代码均为CPU版本且缺乏优化。作者利用业余时间开发了基于CUDA加速的C++部署模块,将处理时间从250ms提升至90ms。项目分三阶段推进:1)构建基准测试;2)开发CUDA算子加速;3)支持多系统兼容(当前已完成TensorRT支持)并重构代码架构,引入task/taskflow概念以适应多模型串联需求。项目仍在持续优化中,代码已开源。原创 2025-06-09 22:29:13 · 417 阅读 · 0 评论
分享