自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(32)
  • 收藏
  • 关注

原创 第30周———Pytorch|RNN-心脏病预测

🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊RNN 的核心特点是它能够利用序列中的历史信息来影响当前的输出。RNN 的特点记忆性:RNN 能够利用历史信息来影响当前的输出,这使得它在处理序列数据时非常有效。例如,在自然语言处理中,RNN 可以利用前面的单词来预测下一个单词。灵活性:RNN 的结构可以灵活地处理不同长度的序列数据,适用于各种序列任务,如语言建模、机器翻译、语音识别等。动态性:RNN 的状态是动态变化的,能够适应序列中的时间依赖性。

2025-06-06 17:40:26 299

原创 第30周———Tensor Flow|RNN-心脏病预测

🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊可以通过动态调整学习率和增加正则层来提高测试准确率。

2025-05-30 16:39:48 1007

原创 第29周———Inception v3算法实战与解析

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊相较于 Inception V1,它在结构上进行了多项优化,进一步提升了模型的准确率和计算效率。该网络引入了多个关键改进,如使用因式分解卷积(例如将 5×5 卷积分解为两个 3×3 卷积)以减少计算成本,引入批归一化(Batch Normalization)以加速收敛和提高稳定性,以及采用辅助分类器增强梯度传播。此外,Inception V3 还通过更加复杂的模块堆叠方式提高了模型对图像特征的表达能力。

2025-05-23 13:58:55 456

原创 第28周——InceptionV1实现猴痘识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊其主要优点在于通过并行使用不同尺寸的卷积核(1×1、3×3、5×5)以及引入1×1卷积进行降维,在有效提升特征提取能力的同时大幅减少了计算量和参数数量,表现出较高的计算效率和良好的实际性能。然而,InceptionV1的网络结构较为复杂,不易手工实现与调试,且固定的卷积核组合在适应不同任务时灵活性不足。此外,虽然其参数量较小,但多分支结构在某些硬件平台上部署并不友好,后续版本也对其做了进一步优化。

2025-05-15 22:54:05 1080

原创 第J7周:对于ResNeXt-50算法的思考

在所提供的残差单元 block 函数中,存在一个潜在的问题点,即当 conv_shortcut=False 时,shortcut 分支直接使用输入张量 x,而没有经过任何通道数调整操作。与此同时,主路径经过卷积操作之后,其输出通道数被显式设定为 filters * 2。这样,在执行 Add() 操作时,如果输入张量 x 的通道数并不等于 filters * 2,就会出现形状不匹配的错误。

2025-05-09 20:03:49 712

原创 第J6周:ResNeXt-50实战

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊这次的实验,我选择将 SE(Squeeze-and-Excitation)模块集成到 ResNeXt-50 网络中,以探索其对模型表达能力和分类精度的提升效果。ResNeXt-50 是一种融合了 ResNet 的残差连接思想与 Inception 式多分支结构的网络架构,其核心思想在于引入Cardinality(基数),即增加“路径的数目”而不是仅堆叠更多的层或通道数,从而以较低计算成本获得更强的表现能力。

2025-05-02 18:15:14 665

原创 第25周:DenseNet+SE-Net实战

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在本次尝试中,我将SE(Squeeze-and-Excitation)模块集成到了DenseNet架构之中,以进一步增强网络对通道维度信息的建模能力。DenseNet以其密集连接的特性而闻名,每一层都会接收前面所有层的特征图输入,这种结构极大地促进了特征重用与梯度传播。而SE模块则专注于通过显式建模通道间的依赖关系,动态地为每个通道分配权重,从而提升网络对关键特征的关注能力。

2025-04-25 20:01:52 929

原创 第24周:Resnet结合DenseNet

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊模型的核心是一个结合 ResNet 和 DenseNet 的混合网络:ResNet 残差块:通过残差连接解决了梯度消失问题,使得网络可以训练得更深。DenseNet 密集块:通过密集连接实现了特征重用,提高了参数效率。混合模型:先通过一个 ResNet 残差块 提取特征,然后通过一个 DenseNet 密集块 进一步提取和重用特征,最后通过全局平均池化和全连接层进行分类。

2025-04-18 18:48:38 1113

原创 第23周:DenseNet算法实战与解析

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖vK同学啊。

2025-04-10 18:44:24 907

原创 第J2周:ResNet50V2算法实战与解析

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊resnet50v2的详细网络结构:​。

2025-04-04 14:26:17 777

原创 第21周:RestNet-50算法实践

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在编写代码时遇到“name 'torch' is not defined”错误,意识到未安装PyTorch。此次经历提醒我,在开始项目前务必检查所需库是否已安装。同时,熟悉环境配置和错误排查方法至关重要,以避免此类基础问题影响项目进度。

2025-03-28 21:49:01 913

原创 第10周:Pytorch实现车牌识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在之前的案例中,我们多是使用函数直接导入已经分类好的数据集形成Dataset,然后使用DataLoader加载Dataset,但是这次对无法分类数据集,自定义一个MyDataset加载车牌数据集并完成车牌识别。模型的输出,我们之前的网络结构输出都是[-1, 7][-1, 2][-1, 4]这样的二维数据,如果要求模型输出结果是多维数据,那么本案例将是很好的示例。

2025-03-21 12:32:24 814

原创 ​第19周:YOLOv5-Backbone模块实现

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊上周YOLOv5_backbone更完整,保留了 YOLOv5 的核心结构,适用于更复杂的任务。SPPF 层用于提取更高级特征,更适合大规模数据集和复杂分类任务。本周model_K更轻量,减少了 Conv 和 C3 层的数量,适用于计算资源受限的设备。可能适用于小型数据集,但少了 SPPF,可能会降低特征提取的能力。如果目标是减少计算量,加快推理速度,model_K 可能更适合。

2025-03-13 00:30:40 969

原创 第18周:YOLOv5-C3模块实现

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊初步学习了YOLOv5算法中的C3模块搭建网络,yolo5小且快,优化器的选择也很重要。

2025-03-07 20:31:29 919

原创 深度学习笔记17-马铃薯病害识别(VGG-16复现)

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊要搞清学习用的数据集文件的标签,在打0、1、2标签的时候,一定要注意将标签打在对应的,不要忘记,也不要打错子文件夹上,否则会影响训练结果甚至会使得整个模型无效。

2025-02-28 22:27:06 785

原创 深度学习笔记16-VGG-16算法-Pytorch实现人脸识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在进行模型训练时,我遇到了一些常见的错误和挑战,下面总结了几个注意事项和tips,供后续使用:1.模型参数和数据维度匹配•报错:“mat1 and mat2 shapes cannot be multiplied”,通常是因为模型的输入数据维度和模型定义的层不匹配。特别是在卷积层后接全连接层时,确保通过展平(flatten)操作正确调整输入的形状。例如,卷积输出的大小和全连接层的输入维度必须匹配。2.

2025-02-21 21:04:01 1421

原创 深度学习笔记15-第P5周:Pytorch实现运动鞋识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊要搞清学习用的数据集子母文件的关系,尤其是在打0、1标签的时候,一定要注意将标签打在addidas和nike的子文件夹上,否则会影响训练结果甚至会使得整个模型无效。

2025-02-14 20:07:07 1071

原创 深度学习笔记14-第P4周:实现猴痘识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊模型设计的关键点•输出层与任务匹配:模型的输出层设计必须与具体任务的目标严格匹配。比如,在分类任务中,输出的神经元个数需要等于类别数量,且标签要从 0 开始编号。忽视这一点可能导致模型抛出意料之外的错误。•正则化策略:为了防止模型过拟合,可以使用 Dropout、权重衰减等正则化技术。在模型设计时,将正则化融入架构能显著提高泛化能力。•激活函数和归一化。

2025-01-24 15:30:32 890

原创 深度学习笔记13-第P3周:Pytorch实现天气识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊1. 数据预处理的细节•数据集组织:深度学习模型的成功很大程度上依赖于数据的质量和组织结构。在数据集加载过程中,尤其是使用如 ImageFolder 这样的工具时,数据目录的结构非常重要。PyTorch要求数据集按类别存放在不同的子文件夹中,这一点必须保证。如果数据的结构不符合要求,模型会无法识别类别,导致无法正确训练。•路径检查:在加载数据之前,确保数据集路径正确且文件夹结构没有问题。

2025-01-17 20:50:28 858

原创 深度学习笔记12-PyTorch实现CIFAR10彩色图片识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在这次学习中,我实现了一个卷积神经网络(CNN),用于 CIFAR-10 数据集的图像分类任务,并通过 PyTorch 进行了训练和测试。在代码调试过程中,我遇到了 NameError: name 'test' is not defined 的问题,原因是我在训练循环中调用了未定义的 test 函数。通过学习,我解决了该问题,具体步骤包括:1.分析错误原因:明确未定义的 test 函数在代码中负责计算测试集的损失和准确率。2.定义。

2025-01-03 21:39:25 693

原创 深度学习笔记11-Pytorch实现mnist手写数字识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

2024-12-27 19:46:17 846

原创 第T11周:优化器对比实验

前言。

2024-12-20 22:02:07 351

原创 第T10周:数据增强

前言 在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到我们代码当中,两种数据增强方式如下:一、前期准备工作1. 设置GPU2. 加载数据关于 的介绍,我这里就不赘述了,不明白的同学直接看这里:tf.keras.preprocessing.image_dataset_from_directory() 简介_tf.python.keras preprocessing在哪里-CSDN博客

2024-12-13 21:58:49 464

原创 深度学习笔记09-VGG-16实现猫狗识别2

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在训练深度学习模型时,动态调整学习率需要注意版本兼容问题。TensorFlow 的优化器属性因版本不同而有所变化,新版本中使用 model.optimizer.learning_rate.assign(lr),而旧版本中可以用 K.set_value(model.optimizer.lr, lr)。此外,确保学习率的数据类型为浮点数(float),避免因类型不匹配导致报错。

2024-12-06 21:42:48 804

原创 深度学习笔记08-VGG-16实现猫狗识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在训练模型在 TensorFlow 2.18.0 中,Adam 优化器确实使用 learning_rate 属性,而不是 lr。要注意版本的问题,网络比较复杂,建议用GPU。

2024-11-29 19:24:02 1238

原创 深度学习笔记07-VGG-16实现咖啡豆识别

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊VGG1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。建议使用GPU。

2024-11-22 19:30:55 913

原创 深度学习笔记06-CNN实现好莱坞明星识别(Tensorflow)

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊根据版本情况在构建cnn网络的时候看收否要删去"“best_model.h5”不可以的话试试“best_model.weights.h5"准确率还在尝试提升,后续上传。

2024-11-15 17:58:40 1122

原创 深度学习笔记05-CNN实现运动鞋品牌识别(Tensorflow)

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在本次学习中,我们了解了如何提高并稳定深度学习模型的验证准确率。主要策略包括:调整学习率,选择合适的优化器并优化其参数,合理设定批大小(Batch size),在模型中加入正则化和Dropout层,应用数据增强以提升模型泛化能力,以及优化模型结构(如卷积层深度和过滤器数量)。此外,合理的早停策略也能有效避免过拟合。通过对这些参数的微调和组合,模型的性能和验证准确率可以显著提高和稳定。

2024-11-08 21:59:36 757

原创 深度学习笔记04-CNN实现猴痘病识别(Tensorflow)

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊1.数据集加速配置,如何更好的利用CPU时间2.保存模型的要素,结构、权重、配置。仅保存权重并不是模型本身。

2024-11-01 16:42:26 978 2

原创 深度学习笔记03-CNN实现天气图片识别(Tensorflow)

CNN实现天气图片识别(Tensorflow) 较上篇文章,本文为了增加模型的泛化能力,新增了Dropout层并且将最大池化层调整成了平均池化层。

2024-10-25 12:43:44 1118

原创 深度学习笔记02-CNN实现彩色图片分类(Tensorflow)

🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊对于灰度图像,每个像素只有一个亮度值,因此通道数为1,彩色图片通道数为3(对应红、绿、蓝三种颜色)。

2024-10-15 22:23:27 1120

原创 深度学习笔记01-CNN实现mnist手写数字识别(Tensorflow)

神经网络通常使用梯度下降法来进行优化,而数据的取值范围会影响梯度的更新速度。如果数据的数值差异较大,某些特征的梯度可能会非常大,而其他特征的梯度则会非常小,这可能导致梯度下降不平衡,进而使模型收敛变慢。通过归一化,将数据缩放到相似的范围(通常是0到1或-1到1之间),可以让模型的各层权重更新更稳定,梯度下降也会更加有效。

2024-10-10 20:26:28 890

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除