- 博客(45)
- 收藏
- 关注
原创 44周打卡——Pix2Pix算法
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊Pix2Pix算法是一种基于条件生成对抗网络(cGANs)的图像到图像翻译算法,由 Phillip Isola 等人在 2016 年提出。该算法的核心思想是将输入图像作为条件信息,通过生成器和判别器的对抗训练,将输入图像转换为目标图像。Pix2Pix 的典型应用场景包括从语义分割图生成真实图像、从边缘图生成照片、从黑白图像生成彩色图像等。核心思想。
2025-09-12 21:33:17
671
原创 42周打卡——CGAN生成手势图像
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊CGAN(Conditional Generative Adversarial Network,条件生成对抗网络)是生成对抗网络(GAN)的一种扩展形式。与原始的 GAN 不同,CGAN 允许在训练过程中引入额外的信息(标签或条件),从而控制生成数据的类型。一、回顾:GAN 的基本结构在介绍 CGAN 之前,先简单回顾一下 GAN:GAN 由两个神经网络组成:生成器(Generator)G:从随机噪声 z 生成图像。
2025-08-29 19:21:08
332
原创 第41周——人脸图像生成
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊# 自定义权重初始化函数,作用于netG和netD# 获取当前层的类名# 如果类名中包含'Conv',即当前层是卷积层= -1:# 使用正态分布初始化权重数据,均值为0,标准差为0.02# 如果类名中包含'BatchNorm',即当前层是批归一化层= -1:# 使用正态分布初始化权重数据,均值为1,标准差为0.02# 使用常数初始化偏置项数据,值为0# 输入为Z,经过一个转置卷积层。
2025-08-22 21:27:57
673
1
原创 第40周——GAN入门
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊import os## 创建文件夹os.makedirs("./images/", exist_ok=True) # 记录训练过程的图片效果os.makedirs("./save/", exist_ok=True) # 训练完成时模型保存的位置os.makedirs("./datasets/mnist", exist_ok=True) # 下载数据集存放的位置## 超参数配置b1 = 0.5b2 = 0.999。
2025-08-15 21:33:15
1045
原创 第38周————调用官方权重进行检测
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊源码理解与环境搭建:通过从GitHub下载YOLOv5源代码,并成功配置运行环境,我对PyTorch框架有了更深的理解。在解决依赖项安装过程中的各种问题时,也锻炼了我的问题排查能力。图片和视频识别实战:亲手执行图像和视频的目标检测任务,使我对YOLOv5的实际应用有了直观的感受。特别是看到模型能够准确地识别出复杂的场景中的物体,极大地激发了我的学习兴趣。
2025-08-01 21:53:29
322
原创 第37周————阿尔茨海默病诊断特征优化版(Pytorch)
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊混淆矩阵是一个二维矩阵,用于总结分类模型在不同类别上的预测结果,包括 True Positive (TP)、False Negative (FN)、False Positive (FP)、True Negative (TN)。性能指标:准确率(Accuracy):模型正确分类的样本占总样本数的比例。精确率(Precision):模型预测为正类别的样本中有多少是真正的正类别。
2025-07-25 18:44:15
878
原创 第36周———— RNN实现阿尔茨海默病诊断
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊代码展示了如何使用PyTorch框架进行阿尔茨海默病数据集的分类任务。以下是该代码的主要步骤和功能总结:检查GPU:首先,代码检查是否有可用的GPU,并设置相应的设备(cuda或cpu)。查看数据:通过Pandas库加载数据集,并删除第一列和最后一列,这可能是为了去除非特征信息(如ID)或冗余信息。划分数据集:对数据进行预处理,包括标准化以及将数据划分为训练集和测试集。
2025-07-18 11:37:04
714
原创 第35周—————糖尿病预测模型优化探索
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊由于 LSTM 的细胞结构和门控机制相对复杂,相比于简单的神经网络模型,其计算复杂度较高。在处理大规模数据或构建深度 LSTM 网络时,训练时间和计算资源的需求可能会成为瓶颈,需要强大的计算硬件支持。在数据量较小或模型参数过多的情况下,LSTM 模型也可能出现过拟合现象,即模型过于适应训练数据,而对新的数据泛化能力较差。下一步探索:尝试减少参数,拟合效果会更好,剔除掉相关性较弱的数据。
2025-07-10 23:08:56
657
1
原创 第32周———Tensorflow|LSTM-火灾温度预测
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊1) 项目背景与目标本项目基于 TensorFlow 框架,构建了一个用于时间序列预测的 LSTM 模型。目标是从包含 Tem1、CO 1 和 Soot 1 三个特征的数据集中提取信息,利用连续8个时间步的历史数据来预测第9个时间步的 Tem1 值。整个代码流程涵盖了数据预处理、模型构建与训练、性能评估以及结果可视化等核心步骤。2)代码结构与关键流程(1)GPU资源检测与配置。
2025-06-20 19:00:27
1185
原创 第30周———Pytorch|RNN-心脏病预测
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊RNN 的核心特点是它能够利用序列中的历史信息来影响当前的输出。RNN 的特点记忆性:RNN 能够利用历史信息来影响当前的输出,这使得它在处理序列数据时非常有效。例如,在自然语言处理中,RNN 可以利用前面的单词来预测下一个单词。灵活性:RNN 的结构可以灵活地处理不同长度的序列数据,适用于各种序列任务,如语言建模、机器翻译、语音识别等。动态性:RNN 的状态是动态变化的,能够适应序列中的时间依赖性。
2025-06-06 17:40:26
349
原创 第30周———Tensor Flow|RNN-心脏病预测
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊可以通过动态调整学习率和增加正则层来提高测试准确率。
2025-05-30 16:39:48
1055
原创 第29周———Inception v3算法实战与解析
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊相较于 Inception V1,它在结构上进行了多项优化,进一步提升了模型的准确率和计算效率。该网络引入了多个关键改进,如使用因式分解卷积(例如将 5×5 卷积分解为两个 3×3 卷积)以减少计算成本,引入批归一化(Batch Normalization)以加速收敛和提高稳定性,以及采用辅助分类器增强梯度传播。此外,Inception V3 还通过更加复杂的模块堆叠方式提高了模型对图像特征的表达能力。
2025-05-23 13:58:55
521
原创 第28周——InceptionV1实现猴痘识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊其主要优点在于通过并行使用不同尺寸的卷积核(1×1、3×3、5×5)以及引入1×1卷积进行降维,在有效提升特征提取能力的同时大幅减少了计算量和参数数量,表现出较高的计算效率和良好的实际性能。然而,InceptionV1的网络结构较为复杂,不易手工实现与调试,且固定的卷积核组合在适应不同任务时灵活性不足。此外,虽然其参数量较小,但多分支结构在某些硬件平台上部署并不友好,后续版本也对其做了进一步优化。
2025-05-15 22:54:05
1112
原创 第J7周:对于ResNeXt-50算法的思考
在所提供的残差单元 block 函数中,存在一个潜在的问题点,即当 conv_shortcut=False 时,shortcut 分支直接使用输入张量 x,而没有经过任何通道数调整操作。与此同时,主路径经过卷积操作之后,其输出通道数被显式设定为 filters * 2。这样,在执行 Add() 操作时,如果输入张量 x 的通道数并不等于 filters * 2,就会出现形状不匹配的错误。
2025-05-09 20:03:49
773
原创 第J6周:ResNeXt-50实战
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊这次的实验,我选择将 SE(Squeeze-and-Excitation)模块集成到 ResNeXt-50 网络中,以探索其对模型表达能力和分类精度的提升效果。ResNeXt-50 是一种融合了 ResNet 的残差连接思想与 Inception 式多分支结构的网络架构,其核心思想在于引入Cardinality(基数),即增加“路径的数目”而不是仅堆叠更多的层或通道数,从而以较低计算成本获得更强的表现能力。
2025-05-02 18:15:14
732
原创 第25周:DenseNet+SE-Net实战
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在本次尝试中,我将SE(Squeeze-and-Excitation)模块集成到了DenseNet架构之中,以进一步增强网络对通道维度信息的建模能力。DenseNet以其密集连接的特性而闻名,每一层都会接收前面所有层的特征图输入,这种结构极大地促进了特征重用与梯度传播。而SE模块则专注于通过显式建模通道间的依赖关系,动态地为每个通道分配权重,从而提升网络对关键特征的关注能力。
2025-04-25 20:01:52
969
原创 第24周:Resnet结合DenseNet
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊模型的核心是一个结合 ResNet 和 DenseNet 的混合网络:ResNet 残差块:通过残差连接解决了梯度消失问题,使得网络可以训练得更深。DenseNet 密集块:通过密集连接实现了特征重用,提高了参数效率。混合模型:先通过一个 ResNet 残差块 提取特征,然后通过一个 DenseNet 密集块 进一步提取和重用特征,最后通过全局平均池化和全连接层进行分类。
2025-04-18 18:48:38
1143
原创 第21周:RestNet-50算法实践
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在编写代码时遇到“name 'torch' is not defined”错误,意识到未安装PyTorch。此次经历提醒我,在开始项目前务必检查所需库是否已安装。同时,熟悉环境配置和错误排查方法至关重要,以避免此类基础问题影响项目进度。
2025-03-28 21:49:01
972
原创 第10周:Pytorch实现车牌识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在之前的案例中,我们多是使用函数直接导入已经分类好的数据集形成Dataset,然后使用DataLoader加载Dataset,但是这次对无法分类数据集,自定义一个MyDataset加载车牌数据集并完成车牌识别。模型的输出,我们之前的网络结构输出都是[-1, 7][-1, 2][-1, 4]这样的二维数据,如果要求模型输出结果是多维数据,那么本案例将是很好的示例。
2025-03-21 12:32:24
925
原创 第19周:YOLOv5-Backbone模块实现
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊上周YOLOv5_backbone更完整,保留了 YOLOv5 的核心结构,适用于更复杂的任务。SPPF 层用于提取更高级特征,更适合大规模数据集和复杂分类任务。本周model_K更轻量,减少了 Conv 和 C3 层的数量,适用于计算资源受限的设备。可能适用于小型数据集,但少了 SPPF,可能会降低特征提取的能力。如果目标是减少计算量,加快推理速度,model_K 可能更适合。
2025-03-13 00:30:40
1044
原创 第18周:YOLOv5-C3模块实现
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊初步学习了YOLOv5算法中的C3模块搭建网络,yolo5小且快,优化器的选择也很重要。
2025-03-07 20:31:29
1053
原创 深度学习笔记17-马铃薯病害识别(VGG-16复现)
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊要搞清学习用的数据集文件的标签,在打0、1、2标签的时候,一定要注意将标签打在对应的,不要忘记,也不要打错子文件夹上,否则会影响训练结果甚至会使得整个模型无效。
2025-02-28 22:27:06
838
原创 深度学习笔记16-VGG-16算法-Pytorch实现人脸识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在进行模型训练时,我遇到了一些常见的错误和挑战,下面总结了几个注意事项和tips,供后续使用:1.模型参数和数据维度匹配•报错:“mat1 and mat2 shapes cannot be multiplied”,通常是因为模型的输入数据维度和模型定义的层不匹配。特别是在卷积层后接全连接层时,确保通过展平(flatten)操作正确调整输入的形状。例如,卷积输出的大小和全连接层的输入维度必须匹配。2.
2025-02-21 21:04:01
2138
原创 深度学习笔记15-第P5周:Pytorch实现运动鞋识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊要搞清学习用的数据集子母文件的关系,尤其是在打0、1标签的时候,一定要注意将标签打在addidas和nike的子文件夹上,否则会影响训练结果甚至会使得整个模型无效。
2025-02-14 20:07:07
1130
原创 深度学习笔记14-第P4周:实现猴痘识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊模型设计的关键点•输出层与任务匹配:模型的输出层设计必须与具体任务的目标严格匹配。比如,在分类任务中,输出的神经元个数需要等于类别数量,且标签要从 0 开始编号。忽视这一点可能导致模型抛出意料之外的错误。•正则化策略:为了防止模型过拟合,可以使用 Dropout、权重衰减等正则化技术。在模型设计时,将正则化融入架构能显著提高泛化能力。•激活函数和归一化。
2025-01-24 15:30:32
941
原创 深度学习笔记13-第P3周:Pytorch实现天气识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊1. 数据预处理的细节•数据集组织:深度学习模型的成功很大程度上依赖于数据的质量和组织结构。在数据集加载过程中,尤其是使用如 ImageFolder 这样的工具时,数据目录的结构非常重要。PyTorch要求数据集按类别存放在不同的子文件夹中,这一点必须保证。如果数据的结构不符合要求,模型会无法识别类别,导致无法正确训练。•路径检查:在加载数据之前,确保数据集路径正确且文件夹结构没有问题。
2025-01-17 20:50:28
881
原创 深度学习笔记12-PyTorch实现CIFAR10彩色图片识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在这次学习中,我实现了一个卷积神经网络(CNN),用于 CIFAR-10 数据集的图像分类任务,并通过 PyTorch 进行了训练和测试。在代码调试过程中,我遇到了 NameError: name 'test' is not defined 的问题,原因是我在训练循环中调用了未定义的 test 函数。通过学习,我解决了该问题,具体步骤包括:1.分析错误原因:明确未定义的 test 函数在代码中负责计算测试集的损失和准确率。2.定义。
2025-01-03 21:39:25
769
原创 深度学习笔记11-Pytorch实现mnist手写数字识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。
2024-12-27 19:46:17
968
原创 第T10周:数据增强
前言 在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到我们代码当中,两种数据增强方式如下:一、前期准备工作1. 设置GPU2. 加载数据关于 的介绍,我这里就不赘述了,不明白的同学直接看这里:tf.keras.preprocessing.image_dataset_from_directory() 简介_tf.python.keras preprocessing在哪里-CSDN博客
2024-12-13 21:58:49
527
原创 深度学习笔记09-VGG-16实现猫狗识别2
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在训练深度学习模型时,动态调整学习率需要注意版本兼容问题。TensorFlow 的优化器属性因版本不同而有所变化,新版本中使用 model.optimizer.learning_rate.assign(lr),而旧版本中可以用 K.set_value(model.optimizer.lr, lr)。此外,确保学习率的数据类型为浮点数(float),避免因类型不匹配导致报错。
2024-12-06 21:42:48
869
原创 深度学习笔记08-VGG-16实现猫狗识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊在训练模型在 TensorFlow 2.18.0 中,Adam 优化器确实使用 learning_rate 属性,而不是 lr。要注意版本的问题,网络比较复杂,建议用GPU。
2024-11-29 19:24:02
1965
原创 深度学习笔记07-VGG-16实现咖啡豆识别
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊VGG1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。建议使用GPU。
2024-11-22 19:30:55
952
原创 深度学习笔记06-CNN实现好莱坞明星识别(Tensorflow)
🍨本文为🔗365天深度学习训练营中的学习记录博客🍖K同学啊根据版本情况在构建cnn网络的时候看收否要删去"“best_model.h5”不可以的话试试“best_model.weights.h5"准确率还在尝试提升,后续上传。
2024-11-15 17:58:40
1214
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅