题目
给定一个数组,若数组里存在某个数字,其数量超过数组长度的一半以上,则称该数为水王数字。
例如数组[3,2,1,2,3,3,4,3,3],数字3为水王数字。若不存在水王数字,则返回-1;
要求时间复杂度:o(n),空间复杂度:o(1)
解法一 (空间复杂度不满足要求)
思路:遍历数组,使用一个map来记录数字出现次数,找出出现次数大于数组长度1/2的数字。
public static int waterKing(int[] nums) {
int result = -1;
if (nums != null || nums.length != 0) {
Map<Integer, Integer> map = new HashMap<>();
for (int key : nums) {
int count = map.getOrDefault(key, 0) + 1;
map.put(key, count);
if (count > nums.length / 2) {
result = key;
break;
}
}
}
return result;
}
解法二 (满足时间与空间复杂度要求)
思路:遍历数组,若两个数不同,则同时删除,若相同,则保留,继续遍历。到最后,由于水王数字超过数组长度的1/2,若存在,一定可以留下。
代码思路:使用两个变量,一个为候选,一个为血量。血量记录候选出现的次数,当血量为0时,说明此时还没有真正的候选,可以将当前数字设置为候选,血量为1,继续遍历。若血量不为0,说明有候选,将候选数字与当前数字做对比,若相等,则候选血量加1,若不相等,则候选血量减少1。遍历完之后,若血量大于0,说明候选有可能真的为血王数字。再次遍历一遍数字,看是否候选数字次数大于数组长度的1/2。
代码:
public static int waterKing(int[] nums) {
int candidate = 0;
int restHP = 0;
if (Objects.requireNonNull(nums).length > 0) {
for (int key : nums) {
if (restHP == 0) {
candidate = key;
restHP++;
} else if (key == candidate) {
restHP++;
} else {
restHP--;
}
}
if (restHP != 0) {
restHP = 0;
for (int key : nums) {
if (key == candidate) {
restHP++;
}
}
}
}
return restHP > nums.length / 2 ? candidate : -1;
}