发出一个固定金额的红包,由若干个人来抢,需要满足哪些规则?
1.所有人抢到金额之和等于红包金额,不能超过,也不能少于。
2.每个人至少抢到一分钱。
3.要保证所有人抢到金额的几率相等。
小灰的思路是什么样呢?
每次抢到的金额 = 随机区间 ( 0, 剩余金额 )
为什么这么说呢?让我们看一个栗子:
假设有10个人,红包总额100元。
第一个人的随机范围是(0,100元),平均可以抢到50元。
假设第一个人随机到50元,那么剩余金额是100-50 = 50 元。
第二个人的随机范围是 (0, 50元),平均可以抢到25元。
假设第二个人随机到25元,那么剩余金额是50-25 = 25 元。
第三个人的随机范围是 (0, 25元),平均可以抢到12.5元。
以此类推,每一次随机范围越来越小。
方法1:二倍均值法
剩余红包金额为M,剩余人数为N,那么有如下公式:
每次抢到的金额 = 随机区间 (0, M / N X 2)
这个公式,保证了每次随机金额的平均值是相等的,不会因为抢红包的先后顺序而造成不公平。
举个栗子:
假设有10个人,红包总额100元。
100/10X2 = 20, 所以第一个人的随机范围是(0,20 ),平均可以抢到10元。
假设第一个人随机到10元,那么剩余金额是100-10 = 90 元。
90/9X2 = 20, 所以第二个人的随机范围同样是(0,20 ),平均可以抢到10元。
假设第二个人随机到10元,那么剩余金额是90-10 = 80 元。
80/8X2 = 20, 所以第三个人的随机范围同样是(0,20 ),平均可以抢到10元。
以此类推,每一次随机范围的均值是相等的。
//发红包算法,金额参数以分为单位
public static List<Integer> divideRedPackage(Integer totalAmount, Integer totalPeopleNum){
List<Integer> amountList = new ArrayList<Integer>();
Integer restAmount = totalAmount;
Integer restPeopleNum = totalPeopleNum;
Random random = new Random();
for(int i=0; i<totalPeopleNum-1; i++){
//随机范围:[1,剩余人均金额的两倍),左闭右开
int amount = random.nextInt(restAmount / restPeopleNum * 2 - 1) + 1;
restAmount -= amount;
restPeopleNum --;
amountList.add(amount);
}
amountList.add(restAmount);
return amountList;
}
public static void main(String[] args){
List<Integer> amountList = divideRedPackage(5000, 30);
for(Integer amount : amountList){
System.out.println("抢到金额:" + new BigDecimal(amount).divide(new BigDecimal(100)));
}
}
程序输出结果如下:
抢到金额:2.92
抢到金额:1.48
抢到金额:3.05
抢到金额:0.53
抢到金额:0.45
抢到金额:1.36
抢到金额:1.02
抢到金额:1.99
抢到金额:1.3
抢到金额:0.48
抢到金额:0.83
抢到金额:2.89
抢到金额:0.94
抢到金额:2.11
抢到金额:3.13
抢到金额:0.91
抢到金额:2.64
抢到金额:2.02
抢到金额:2.88
抢到金额:1.13
抢到金额:2.09
抢到金额:1.37
抢到金额:2.41
抢到金额:2.13
抢到金额:1.32
抢到金额:0.44
抢到金额:1.62
抢到金额:1.89
抢到金额:2.23
抢到金额:0.44
方法2:线段切割法
何谓线段切割法?我们可以把红包总金额想象成一条很长的线段,而每个人抢到的金额,则是这条主线段所拆分出的若干子线段。
如何确定每一条子线段的长度呢?由“切割点”来决定。当N个人一起抢红包的时候,就需要确定N-1个切割点。
因此,当N个人一起抢总金额为M的红包时,我们需要做N-1次随机运算,以此确定N-1个切割点。随机的范围区间是(1, M)。
当所有切割点确定以后,子线段的长度也随之确定。这样每个人来抢红包的时候,只需要顺次领取与子线段长度等价的红包金额即可。
这就是线段切割法的思路。在这里需要注意以下两点:
1.当随机切割点出现重复,如何处理。
2.如何尽可能降低时间复杂度和空间复杂度。
—————END—————
发出一个固定金额的红包,由若干个人来抢,需要满足哪些规则?
1.所有人抢到金额之和等于红包金额,不能超过,也不能少于。
2.每个人至少抢到一分钱。
3.要保证所有人抢到金额的几率相等。
小灰的思路是什么样呢?
每次抢到的金额 = 随机区间 ( 0, 剩余金额 )
为什么这么说呢?让我们看一个栗子:
假设有10个人,红包总额100元。
第一个人的随机范围是(0,100元),平均可以抢到50元。
假设第一个人随机到50元,那么剩余金额是100-50 = 50 元。
第二个人的随机范围是 (0, 50元),平均可以抢到25元。
假设第二个人随机到25元,那么剩余金额是50-25 = 25 元。
第三个人的随机范围是 (0, 25元),平均可以抢到12.5元。
以此类推,每一次随机范围越来越小。
方法1:二倍均值法
剩余红包金额为M,剩余人数为N,那么有如下公式:
每次抢到的金额 = 随机区间 (0, M / N X 2)
这个公式,保证了每次随机金额的平均值是相等的,不会因为抢红包的先后顺序而造成不公平。
举个栗子:
假设有10个人,红包总额100元。
100/10X2 = 20, 所以第一个人的随机范围是(0,20 ),平均可以抢到10元。
假设第一个人随机到10元,那么剩余金额是100-10 = 90 元。
90/9X2 = 20, 所以第二个人的随机范围同样是(0,20 ),平均可以抢到10元。
假设第二个人随机到10元,那么剩余金额是90-10 = 80 元。
80/8X2 = 20, 所以第三个人的随机范围同样是(0,20 ),平均可以抢到10元。
以此类推,每一次随机范围的均值是相等的。
//发红包算法,金额参数以分为单位
public static List<Integer> divideRedPackage(Integer totalAmount, Integer totalPeopleNum){
List<Integer> amountList = new ArrayList<Integer>();
Integer restAmount = totalAmount;
Integer restPeopleNum = totalPeopleNum;
Random random = new Random();
for(int i=0; i<totalPeopleNum-1; i++){
//随机范围:[1,剩余人均金额的两倍),左闭右开
int amount = random.nextInt(restAmount / restPeopleNum * 2 - 1) + 1;
restAmount -= amount;
restPeopleNum --;
amountList.add(amount);
}
amountList.add(restAmount);
return amountList;
}
public static void main(String[] args){
List<Integer> amountList = divideRedPackage(5000, 30);
for(Integer amount : amountList){
System.out.println("抢到金额:" + new BigDecimal(amount).divide(new BigDecimal(100)));
}
}
程序输出结果如下:
抢到金额:2.92
抢到金额:1.48
抢到金额:3.05
抢到金额:0.53
抢到金额:0.45
抢到金额:1.36
抢到金额:1.02
抢到金额:1.99
抢到金额:1.3
抢到金额:0.48
抢到金额:0.83
抢到金额:2.89
抢到金额:0.94
抢到金额:2.11
抢到金额:3.13
抢到金额:0.91
抢到金额:2.64
抢到金额:2.02
抢到金额:2.88
抢到金额:1.13
抢到金额:2.09
抢到金额:1.37
抢到金额:2.41
抢到金额:2.13
抢到金额:1.32
抢到金额:0.44
抢到金额:1.62
抢到金额:1.89
抢到金额:2.23
抢到金额:0.44
方法2:线段切割法
何谓线段切割法?我们可以把红包总金额想象成一条很长的线段,而每个人抢到的金额,则是这条主线段所拆分出的若干子线段。
如何确定每一条子线段的长度呢?由“切割点”来决定。当N个人一起抢红包的时候,就需要确定N-1个切割点。
因此,当N个人一起抢总金额为M的红包时,我们需要做N-1次随机运算,以此确定N-1个切割点。随机的范围区间是(1, M)。
当所有切割点确定以后,子线段的长度也随之确定。这样每个人来抢红包的时候,只需要顺次领取与子线段长度等价的红包金额即可。
这就是线段切割法的思路。在这里需要注意以下两点:
1.当随机切割点出现重复,如何处理。
2.如何尽可能降低时间复杂度和空间复杂度。
—————END—————