Pandas使用总结

  • 1.pandas查看并修改列类型
查看:
df.dtypes
修改
使用astype如下:
df[[column]] = df[[column]].astype(type)
  • 2.列映射编码:
size_mapping = {  
           'XL': 3,  
           'L': 2,  
           'M': 1}  
df['size'] = df['size'].map(size_mapping)  
  • 3.列应用函数
import pandas as pd
def getInterval(arrLike):  #用来计算日期间隔天数的调用的函数
    PublishedTime = arrLike['PublishedTime']
    ReceivedTime = arrLike['ReceivedTime']
    days = dataInterval(PublishedTime.strip(),ReceivedTime.strip())  #注意去掉两端空白
    return days
df['TimeInterval'] = df.apply(getInterval , axis = 1)
  • 4.删除某几列

方法一:直接del df['column-name']

方法二:采用drop方法,有下面三种等价的表达式:

1. df= df.drop('column_name', 1);

2. df.drop('column_name',axis=1, inplace=True)
例: df.drop(['B', 'C'], axis=1)
3. df.drop(df.columns[ : ], axis=1,inplace=True)   # Note: zero indexed

注:凡是会对原数组作出修改并返回一个新数组的,往往都有一个 inplace可选参数。如果手动设定为True(默认为False),那么原数组直接就被替换。也就是说,采用inplace=True之后,原数组名(如2和3情况所示)对应的内存值直接改变;而采用inplace=False之后,原数组名对应的内存值并不改变,需要将新的结果赋给一个新的数组或者覆盖原数组的内存位置(如1情况所示)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值