查看:
df.dtypes
修改
使用astype如下:
df[[column]] = df[[column]].astype(type)
size_mapping = {
'XL': 3,
'L': 2,
'M': 1}
df['size'] = df['size'].map(size_mapping)
import pandas as pd
def getInterval(arrLike): #用来计算日期间隔天数的调用的函数
PublishedTime = arrLike['PublishedTime']
ReceivedTime = arrLike['ReceivedTime']
days = dataInterval(PublishedTime.strip(),ReceivedTime.strip()) #注意去掉两端空白
return days
df['TimeInterval'] = df.apply(getInterval , axis = 1)
方法一:直接del df['column-name']
方法二:采用drop方法,有下面三种等价的表达式:
1. df= df.drop('column_name', 1);
2. df.drop('column_name',axis=1, inplace=True)
例: df.drop(['B', 'C'], axis=1)
3. df.drop(df.columns[ : ], axis=1,inplace=True) # Note: zero indexed
注:凡是会对原数组作出修改并返回一个新数组的,往往都有一个 inplace可选参数。如果手动设定为True(默认为False),那么原数组直接就被替换。也就是说,采用inplace=True之后,原数组名(如2和3情况所示)对应的内存值直接改变;而采用inplace=False之后,原数组名对应的内存值并不改变,需要将新的结果赋给一个新的数组或者覆盖原数组的内存位置(如1情况所示)。