bqw的博客

没什么描述

【自然语言处理】【Word2Vec(三)】使用gensim学习word2vec

相关推荐: 【自然语言处理】【Word2Vec(一)】Word2Vec之前的词表示和文本表示:one-hot_bag of words_TF-IDF_n-gram_Cocurrence matrix和NNLM 【自然语言处理】【Word2Vec(二)】超详细的原理推导(包含负采样和层次softma...

2019-05-20 17:54:55

阅读数 2

评论数 0

【自然语言处理】中文文本预处理及词云_以小说《白夜行》为例

参考:https://www.cnblogs.com/pinard/p/6744056.html import pandas as pd import numpy as np import jieba from wordcloud import WordCloud, STOPWORDS impor...

2019-05-20 16:37:53

阅读数 1

评论数 0

【自然语言处理】【Word2Vec(一)】Word2Vec之前的词表示和文本表示:one-hot_bag of words_TF-IDF_n-gram_Cocurrence matrix和NNLM

2019-05-20 10:55:40

阅读数 3

评论数 0

【自然语言处理】【Word2Vec(二)】超详细的原理推导(包含负采样和层次softmax)

参考: word2vec Parameter Learning Explained

2019-05-17 16:28:13

阅读数 9

评论数 0

【LeetCode】496.下一个更大元素I

题目描述 给定两个没有重复元素的数组nums1和nums2,其中nums1是nums2的子集。找到nums1中每个元素在nums2中的下一个比其大的值。 nums1中数字x的下一个更大元素是指x在nums2中对应位置的右边的第一个比x大的元素。如果不存在,对应位置输出-1。 示例 1: ...

2019-04-29 19:01:43

阅读数 28

评论数 0

【自然语言处理】使用预训练词向量前的文本预处理

说明 环境:kaggle kernel; 数据来源于kaggle,需要手动添加; import pandas as pd import numpy as np from keras.preprocessing.text import Tokenizer from keras.preproces...

2019-04-26 22:57:37

阅读数 124

评论数 0

【深度学习框架Keras】使用常见的预训练词向量_glove_fasttext_word2vec_paragram

说明 1.环境:kaggle kernel 2.数据来源:kaggle(需要手动添加) import pandas as pd import numpy as np from keras.preprocessing.text import Tokenizer from keras.prepro...

2019-04-26 19:14:20

阅读数 134

评论数 0

【自然语言处理】文本分类模型_Transformer_TensorFlow实现

一、原始Transformer模型 1. Paper:Attention Is All You Need 2. 该模型是一个Seq2Seq的模型,其包含一个encoder和一个decoder,其结构如下图: 上图中encoder和decoder只包含了一层结构。在原始的模型中,encoder包...

2019-04-24 19:54:16

阅读数 132

评论数 2

【自然语言处理】文本分类模型_Hierarchical Attention Networks(HAN)_TensorFlow实现

原始论文:Hierarchical Attention Networks for Document Classification 一、模型思想 1. 该模型是一个文档分类模型。 2. 由于文本包含层次结构,例如由“单词”组成“句子”,再由“句子”组成文档,因此为了获得这种层次结构的信息设计了层次结...

2019-04-17 12:46:24

阅读数 35

评论数 0

【自然语言处理】文本分类模型_BiLSTM+Attention_TensorFlow实现

一、模型结构 1. Embedding层:获得词的分布式表示; 2. BiLSTM层:将词向量依次送入到双向LSTM中并得到每个cell的输出outputs; 3. Attention层: 令hih_ihi​表示由BiLSTM产生的包含单词wiw_iwi​上下文信息的隐藏层向量; 通过全连接层将h...

2019-04-16 15:37:44

阅读数 73

评论数 0

【自然语言处理】文本分类模型_TextRNN_TensorFlow实现

一、模型结构 Embedding层:获得词的分布式表示; Stacking LSTM层:堆叠多个LSTM,并对LSTM的输出在句子的维度取平均值,这样平均后的向量视作包含整个句子信息的向量; Dropout+全连接层 二、使用TensorFlow实现模型 import numpy as np...

2019-04-14 19:03:20

阅读数 52

评论数 0

【自然语言处理】文本分类模型_TextRCNN_TensorFlow实现

一、论文解读–模型结构 总的来说,模型是一个双向RNN之后接max pooling; 双向RNN的公式 cl(wi)=f(Wlcl(wi−1)+Wsle(wi−1))c_l(w_i)=f(W^lc_l(w_{i-1})+W^{sl}e(w_{i-1}))cl​(wi​)=f(Wlcl​(wi−...

2019-04-14 18:59:22

阅读数 31

评论数 0

【自然语言处理】文本分类模型_FastText_TensorFlow实现

一、模型结构 Embedding层:获得词的分布式表示; Avg Pooling层:将整个句子的词向量进行平均,得到表示整个句子的向量; Dropout+全连接层 二、使用TensorFlow实现模型 import numpy as np import pandas as pd import ...

2019-04-14 17:34:38

阅读数 29

评论数 0

【自然语言处理】文本分类模型_TextDNN_TensorFlow实现

一、模型结构 Embedding层:获得词的分布式表示; 全连接层(多个):将整个矩阵的词向量拉平,然后输入到全连接层中; softmax进行分类 二、使用TensorFlow实现模型 import numpy as np import pandas as pd import te...

2019-04-13 22:20:55

阅读数 27

评论数 0

【自然语言处理】文本分类模型_TextCNN_TensorFlow实现

一、模型主要思想 将CNN结构应用到文本分类中,使用不同尺寸的filter提取文本特征,从而捕获文本的局部信息。 二、模型结构 1.Embedding层:获得词的分布式表示; 2.卷积层:使用多个不同尺寸的filter对Embedding层的输出提取特征; 3.最大池化层:将不同长度的句子变为定长...

2019-04-13 21:58:58

阅读数 305

评论数 0

【深度学习】:梯度消失与梯度爆炸

2019-04-08 12:09:56

阅读数 48

评论数 0

【深度学习】:Batch Normalization

2019-04-07 18:50:34

阅读数 19

评论数 0

【LeetCode】41.缺失的第一个正数

题目描述 给定一个未排序的整数数组,找出其中没有出现的最小正整数。 思路 假设数组nums大小为n,并假设数组中的数为{1,2,…,n},那么没有出现的最小正整数为n+1;不失一般性的,假设{1,2,…,n}的任意一个数换成负数、0或者大于n的数,那么没有出现的最小正整数就是被换掉的...

2019-04-07 01:20:05

阅读数 28

评论数 0

【LeetCode】242.有效的字母异位词、438.找到字符串中所有字母异位词和383.赎金信

有效的字母异位词 题目描述 给定两个字符串s和t,编写一个函数判断t是否是s的一个字母异位词。例如“anagram”和“nagaram”就是字母异位词。 思路 字母异位词值两个词中各个字母的数量相等,但是位置不同的词。因此使用字典统计一个词的字母数,然后再和另为一个词进行比较就可以。...

2019-04-07 01:04:03

阅读数 23

评论数 0

【LeetCode】231,326,342_2的幂、3的幂和4的幂

2的幂 题目描述 给定一个整数,编写一个函数来判断它是否是2的幂次方。 思路 给定一个二进制数(例如1100),将该数减1为1011,将这两个数按位“与”,即1100&1011得到的结果为1000。总结该规律得到:设存在数n,那么n&(n-1)的结果相...

2019-04-07 00:32:02

阅读数 29

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭