相关博客
【自然语言处理】【大模型】语言模型物理学 第3.3部分:知识容量Scaling Laws
【自然语言处理】Transformer中的一种线性特征
【自然语言处理】【大模型】DeepSeek-V2论文解析
【自然语言处理】【大模型】BitNet:用1-bit Transformer训练LLM
【自然语言处理】BitNet b1.58:1bit LLM时代
【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer
【自然语言处理】【大模型】MPT模型结构源码解析(单机版)
【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)
【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)
论文名称:Your Transformer is Secretly Linear
论文地址:https://arxiv.org/pdf/2405.12250
一、简介
- 本文揭示了transformer decoder独有的一种线性特征。分析相邻层的embedding变换,发现其具有接近完美的线性关系。
- 由于transformer层输出的范数一直很小,当移除残差链接时,线性度下降。
- 实验显示,当移除特别接近于线性的模块或者使用线性近似这些模块,对loss或者模型表现几乎没有影响。
- 通过在预训练中引入基于cosine相似度的正则化项来降低层的线性度,改善了模型在TinyStories和SuperGLUE上的效果。
二、线性评分
将Procrustes相似度推广到任意线性变换,从而实现了一种评估两组向量线性依赖程度的度量指标。
令 X , Y ∈ R n × d X,Y\in\mathbb{R}^{n\times d} X,Y∈Rn×d表示embedding集合。为了计算线性评分,先计算规范化矩阵 X ~ = X / ∥ X ∥ 2 , Y ~ = Y / ∥ Y ∥ 2 \tilde{X}=X/\parallel X\parallel_2,\tilde{Y}=Y/\parallel Y\parallel_2 X~=