bqw的博客

没什么描述

Pandas:随机重排列和随机采样--permutation和take
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

一、随机重排列

df = DataFrame({'水果':['苹果','梨','草莓'],
               '价格':[7,8,9],
               '数量':[3,4,5]})
print(df)
   价格  数量  水果
0   7   3  苹果
1   8   4   梨
2   9   5  草莓

1.permutation:产生0到n-1的所有整数的随机排列

sampler = np.random.permutation(3)
sampler
array([2, 0, 1])

2.行随机排列

print(df.take(sampler))
   价格  数量  水果
2   9   5  草莓
0   7   3  苹果
1   8   4   梨

3.列随机排列

print(df.take(sampler,axis=1))
   水果  价格  数量
0  苹果   7   3
1   梨   8   4
2  草莓   9   5

二、随机采样

sampler = np.random.randint(0,3,size=10)
sampler
array([1, 1, 2, 1, 0, 1, 1, 1, 2, 1])
print(df.take(sampler))
   价格  数量  水果
1   8   4   梨
1   8   4   梨
2   9   5  草莓
1   8   4   梨
0   7   3  苹果
1   8   4   梨
1   8   4   梨
1   8   4   梨
2   9   5  草莓
1   8   4   梨
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bqw18744018044/article/details/79964599
个人分类: Pandas
上一篇Pandas:数据的离散化
下一篇Pandas:类别变量向量化--get_dummies
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

Pandas:随机重排列和随机采样--permutation和take

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭