bqw的博客

没什么描述

【TensorFlow】使用Tensorboard绘制网络结构

import tensorflow as tf # 加载数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/tmp/data',one_hot=True)...

2018-11-29 22:43:13

阅读数 598

评论数 0

【TensorFlow】使用全连接网络+dropout对MNIST进行分类

import tensorflow as tf # 加载数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/tmp/data',one_hot=True)...

2018-11-26 22:54:20

阅读数 299

评论数 0

【TensorFlow】使用TensorFlow执行K-Means

import numpy as np import tensorflow as tf from tensorflow.contrib.factorization import KMeans 加载数据 from tensorflow.examples.tutorials.mnist import ...

2018-11-18 22:21:11

阅读数 284

评论数 0

【TensorFlow】使用Tensorflow实现KNN

import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets(&quo...

2018-11-18 00:41:23

阅读数 422

评论数 4

【TensorFlow】使用TensorFlow的Eager API实现LR

import tensorflow as tf 开始eager模式 tf.enable_eager_execution() tfe = tf.contrib.eager 加载数据 from tensorflow.examples.tutorials.mnist import input_dat...

2018-11-18 00:11:13

阅读数 268

评论数 0

【TensorFlow】使用TensorFlow实现LR

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt load data from tensorflow.examples.tutorials.mnist import input_data mnis...

2018-11-17 23:04:51

阅读数 1082

评论数 0

【TensorFlow】使用TensorFlow的Eager API实现线性回归

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt 开启eager模式 tf.enable_eager_execution() tfe = tf.contrib.eager 参数 learning...

2018-11-17 22:29:13

阅读数 269

评论数 0

【TensorFlow】使用TensorFlow实现线性回归

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt 参数 learning_rate = 0.01 training_epochs = 1000 display_step = 50 生成数据 X_...

2018-11-17 21:56:33

阅读数 259

评论数 0

【TensorFlow】:Eager Mode(动态图模式)

TensorFlow的Eager模型,也可以看做是动态图模型。该模型下不需要先构造图,然后再使用Session.run(),而是可以得到即时的反馈。这样在研究和开发时会更加符合直觉。 import numpy as np import tensorflow as tf 设置eager mode ...

2018-11-17 21:04:59

阅读数 641

评论数 0

【深度学习框架Keras】RNN、RNN的droput、stacking RNN、双向RNN的应用

说明: 主要参考Francois Chollet《Deep Learning with Python》 代码运行环境为kaggle中的kernels; 数据集jena_climate_2009_2016需要手动添加; # This Python 3 environment comes with...

2018-11-09 20:48:35

阅读数 1322

评论数 4

【深度学习】:L1与L2正则化的原理

参考文献: Ian Goodfellow,Yoshua Bengio,Aaron Courville.Deep Learing.

2018-11-09 14:37:23

阅读数 393

评论数 0

【深度学习框架Keras】Batch Normalization与深度可分离卷积

说明: 主要参考Francois Chollet《Deep Learning with Python》; 一、Batch Normalization 在训练神经网络时,对输入进行normalization可以提高训练的速度。但是在只对输入normalization是不够的,那么如果对各个隐藏层...

2018-11-08 16:19:03

阅读数 1005

评论数 0

【深度学习框架Keras】在Keras中使用TensorBoard

一、TensorBoard介绍 TensorBoard是一个内置于TensorFlow中的基于浏览器的可视化工具。只有当Keras使用TensorFlow后端时,这一方法才能用于Keras模型。 TensorBoard的主要用途是在训练过程中帮助你可视化的监控模型内部发生的一切,这样就可以更清楚地...

2018-11-08 15:52:13

阅读数 947

评论数 0

【深度学习框架Keras】Keras回调函数

说明: 主要参考Francois Chollet《Deep Learning with Python》; 代码运行环境为kaggle中的kernels; # This Python 3 environment comes with many helpful analytics librarie...

2018-11-08 13:11:25

阅读数 717

评论数 0

【深度学习框架Keras】非Sequential模型(函数式API)

说明: 主要参考Francois Chollet《Deep Learning with Python》; 代码运行环境为kaggle中的kernels; # This Python 3 environment comes with many helpful analytics librarie...

2018-11-07 21:13:42

阅读数 401

评论数 0

【深度学习框架Keras】在IMDB上应用双向LSTM

说明: 主要参考Francois Chollet《Deep Learning with Python》 代码运行环境为kaggle中的kernels; 数据集IMDB需要手动添加; 循环神经网络及双向循环神经网络请参考:【深度学习】:循环神经网(RNN)、【深度学习】:长期依赖与LSTM # ...

2018-11-07 17:20:44

阅读数 592

评论数 0

【深度学习框架Keras】循环神经网络(SimpleRNN与LSTM)

说明: 主要参考Francois Chollet《Deep Learning with Python》 代码运行环境为kaggle中的kernels; 数据集IMDB需要手动添加; 循环神经网络和LSTM请参考:【深度学习】:循环神经网(RNN)、【深度学习】:长期依赖与LSTM # This...

2018-11-05 17:21:55

阅读数 2277

评论数 0

【深度学习框架Keras】NLP中的n-gram、one-hot与word-embeddings

说明: 主要参考Francois Chollet《Deep Learning with Python》; 代码运行环境为kaggle中的kernels; 数据集IMDB、IMBD RAW以及GloVe需要手动添加 # This Python 3 environment comes with m...

2018-11-05 02:36:20

阅读数 929

评论数 0

【深度学习框架Keras】在小数据集上训练图片分类模型的技巧

说明: 1.主要参考Francois Chollet《Deep Learning with Python》; 2.代码运行环境为kaggle中的kernels; 3.数据集和预训练模型VGG-16需要手动添加; 4.卷积神经网络请参考:【深度学习】:卷积神经网络(CNN) # This Pyt...

2018-11-02 15:35:41

阅读数 2337

评论数 2

《剑指offer》学习笔记_面试题16_数值的整数次方

#include <cfloat> class Solution { public: double Power(double base, int exponent) { //0的负数次方直接返回 if(eq...

2018-11-01 21:09:28

阅读数 311

评论数 0

提示
确定要删除当前文章?
取消 删除