45、Perl与Python编程入门指南

Perl与Python编程入门指南

1. Perl编程基础

Perl在解析各种程序的输出方面表现出色,许多人使用awk和sed等工具完成的任务,Perl能提供更丰富的功能来实现。

1.1 列表排序操作

在Perl中,处理列表排序时,由于每个运算符作用于其右侧紧邻的对象,所以从右向左(或从下向上)阅读代码会更有帮助。
操作流程如下:
1. map运算符 :首先作用于列表,将列表转换为哈希表,其中键为列表元素,值为每个元素的长度。这里可以放入用于排序的转换代码。
2. sort函数 :按值对列表进行排序。
3. 提取键 :最后将哈希表通过提取其键转换回数组,此时数组即为所需的排序顺序。

1.2 命令行处理

以下是一个使用Perl处理命令行输出的简单示例,用于列出大于10KB的文件:

$ ls -la | perl -nae ‘print “$F[8] is $F[4]\n” if $F[4] > 10000;’

参数说明:
- -n :表示对输出的每一行运行Perl代码。
- -a :自动将输出分割到 @F 数组中。
- -e :表示后续跟的是要在命令行执行的Perl代码。

1.3 相关Ubunt
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值