排序:
默认
按更新时间
按访问量

mysql优化之参数优化

1、优化方式硬件优化=》系统优化=》mysql配置优化=》SCHEMA优化=》sql优化=》其他解决方案(redis or MongoDB or Cassandra or HBase)2、mysql配置分析1)常见瓶颈90%系统瓶颈都在IO上,所以提高IOPS尤为总要,iowait过高,加内存,减...

2018-05-24 15:51:28

阅读数:185

评论数:0

GC内存回收深入研究

GO “非分代的、非紧缩、写屏障、并发标记清理”并发清理: 垃圾回收(清理过程)与用户逻辑并发执行 三色并发标记 : 标记与用户逻辑并发执行一般常用垃圾回收方法引用计数这是最简单的一种垃圾回收算法,和之前提到的智能指针异曲同工。对每个对象维护一个 引用计数 ,当引用该对象的对象被销毁或更新时被引用...

2018-05-15 17:45:32

阅读数:28

评论数:0

Golang汇编层面代码分析-内置函数和过程调用

绍Golang中的内置函数和相关操作代码的汇编实现,可以作为上篇博客的补充和实践。汇编中过程调用的参数是通过栈来传递的,在栈上的布局如下:参数3 参数2 参数1 <-FP 保存PC <-SP ... ... 内置函数: new, make, appen...

2018-05-09 16:51:50

阅读数:57

评论数:0

Golang汇编层面代码分析

这篇文档是对于Go编译器套件(6g, 8g, etc.)中不常用的汇编语言的快速预览,涵盖面不是很广泛。Go的汇编语言基于Plan 9的汇编,Plan 9网站的页面上有详细描述。如果你想编写汇编语言,你应该读这篇文档,虽然它是Plan 9相关的。这边文档总结了汇编的语法,并且描述了使用汇编语言和G...

2018-05-09 15:59:12

阅读数:56

评论数:0

GIT 解决fatal: HTTP request failed问题

安装需求:># yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel asciidoc># yum install  gcc perl-ExtUtils-Mak...

2018-05-04 11:01:44

阅读数:271

评论数:0

GitHub 解决不支持老版加密方式 SSL connect error

GITHUB遇到问题 go get -u github.com/revel/cmd/revel# cd .; git clone https://github.com/revel/cmd /home/bravezhe/go_pro/src/github.com/revel/cmdCloning i...

2018-05-04 10:54:16

阅读数:153

评论数:0

带你入门Go:Log日志模块2

Log模块主要三类方法 Print() 用于输出日志 Fatal() 输出日志的同时,调用os.Exit(1)方法退出,小提示:如果函数下存在defer不会执行 Panic() 输出日志的同时,调用panic方法 跟fmt.Print不同的地方在于,fmt.Print,fmt.Fata...

2018-04-20 15:17:34

阅读数:24

评论数:0

golang 子类调用父类函数

golang 子类调用父类函数

2018-04-13 20:45:05

阅读数:44

评论数:0

声明和初始化

当我们第一次看见变量和声明时,我们仅仅看见一些内置的类型,比如整型和字符串。现在我们将学习结构体,并且我们会深入学习包括指针的内容。 通过一种最简单的方式去创建一个结构体值类型: goku := Saiyan{     Name: "Goku",    ...

2018-04-10 21:20:36

阅读数:22

评论数:0

go语言的官方包sync.Pool的实现原理和适用场景

已经使用golang有一段时间,go的协程和gc垃圾回收特性的确会提高程序的开发效率。但是毕竟是一门新语言,如果对于它的机制不了解,用起来可能会蹦出各种潘多拉盒子。今天就讲讲我在项目中用到的sync包的Pool类的使用,以免大家混淆使用。众所周知,go是自动垃圾回收的(garbage collec...

2018-04-10 20:44:41

阅读数:29

评论数:0

全连接网络 VS 卷积网络

全连接神经网络之所以不太适合图像识别任务,主要有以下几个方面的问题:参数数量太多 考虑一个输入1000*1000像素的图片(一百万像素,现在已经不能算大图了),输入层有1000*1000=100万节点。假设第一个隐藏层有100个节点(这个数量并不多),那么仅这一层就有(1000*1000+1)*1...

2018-03-06 17:18:22

阅读数:314

评论数:0

卷积神经网络——输入层、卷积层、激活函数、池化层、全连接层

卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT(输入层)-CONV(卷积层)-RELU(激活函数)-POOL(池化层)-FC(全连接层)卷积层用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filte...

2018-03-06 15:39:26

阅读数:635

评论数:0

一文读懂卷积神经网络CNN

转自:http://dataunion.org/11692.html 作者:张雨石自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的...

2018-03-06 15:18:47

阅读数:32

评论数:0

多通道卷积计算

对于单通道图像,若利用10个卷积核进行卷积计算,可以得到10个特征图;若输入为多通道图像,则输出特征图的个数依然是卷积核的个数(10个)。 1.单通道多个卷积核卷积计算 一个卷积核得到的特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,从而可以学习32种特征。2.多通道多个卷积核卷积计...

2018-03-06 14:40:07

阅读数:51

评论数:0

多通道(比如RGB三通道)卷积过程

今天一个同学问 卷积过程好像是对 一个通道的图像进行卷积, 比如10个卷积核,得到10个feature map, 那么输入图像为RGB三个通道呢,输出就为 30个feature map 吗, 答案肯定不是的, 输出的个数依然是 卷积核的个数。 可以查看常用模型,比如lenet 手写体,Alex i...

2018-03-06 14:37:41

阅读数:127

评论数:0

TF-卷积函数 tf.nn.conv2d 介绍

tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name...

2018-03-06 14:33:47

阅读数:24

评论数:0

使用TCPDump分析Redis的Pipeline比Multi更快的原因

网上对于Redis的Pipeline和Multi的两种模式的速度对比的文章,都大概只提到了Pipeline比Multi更快,原因是Pipeline是一次性全部发送,一次性全部执行,诸如此类吧啦吧啦。 我的疑问是:依据从哪而来?Pipeline真的就是等所有请求都收到后才一次性执行的吗?难道M...

2018-01-29 22:02:05

阅读数:82

评论数:0

tensorflow IOError: [Errno socket error] [Errno 101] Network is unreachable

tensorflow  read_data_sets 下载mnist数据报错 [Errno socket error] [Errno 101] Network is unreachable 解决方法: 手工下载数据包,放入temp目录,read_data_sets 会先判断本地是否存在数据包...

2017-12-29 12:53:51

阅读数:1194

评论数:0

第一章 机器学习笔记 开始机器学习

机器学习算法分监督学习和无监督学习 监督学习其实就是我们对输入样本经过模型训练后有明确的预期输出。 举个栗子,监督学习就是我们知道经过模型训练后会分为好瓜或者坏瓜 无监督学习就是我们对输入样本经过模型训练后得到什么输出完全没有预期。 举个栗子,非监督学习则会将西瓜聚类为几种我们之前没有明确定义的瓜...

2017-11-05 22:23:30

阅读数:132

评论数:0

机器学习实战 算法总结

K-近邻算法 优点 精度高、对异常值不敏感、无数据输入假定 缺点 计算复杂度高、空间复杂度高 适用范围 数值型和标称型 决策树 优点 计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据 缺点 可能会产生过度匹配的问题 适用范围 数值型和标称型 ...

2017-11-04 23:49:18

阅读数:133

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭